Cite this article as: |
Lei Tian, Ao Gong, Xuan-gao Wu, Yan Liu, Zhi-feng Xu, and Ting-an Zhang, Cu2+-catalyzed mechanism in oxygen-pressure acid leaching of artificial sphalerite, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 910-923. https://doi.org/10.1007/s12613-019-1918-2 |
The potential autoclave was used to study the catalytic mechanism of Cu2+ during the oxygen pressure leaching process of artificial sphalerite. By studying the potential change of the system at different temperatures and the SEM–EDS difference of the leaching residues, it was found that in the temperature range of 363–423 K, the internal Cu2+ formed a CuS deposit on the surface of sphalerite, which hindered the leaching reaction, resulting in a zinc leaching rate of only 51.04%. When the temperature exceeds 463 K, the system potential increases steadily. The increase in temperature leads to the dissolution of the CuS, which is beneficial to the circulation catalysis of Cu2+. At this time, the leaching rate of Zn exceeds 95%. In addition, the leaching kinetics equations at 363–423 and 423–483 K were established. The activation energy of zinc leaching at 363–423 and 423–483 K is 38.66 and 36.25 kJ/mol, respectively, and the leaching process is controlled by surface chemical reactions.
[1] |
T.J. Harvey, W. Tai Yen, and J.G. Paterson, A kinetic investigation into the pressure oxidation of sphalerite from a complex concentrate, Miner. Eng., 6(1993), No. 8-10, p. 949. doi: 10.1016/0892-6875(93)90067-W
|
[2] |
R.J. Jan, M.T. Hepworth, and V.G. Fox, A kinetic study on the pressure leaching of sphalerite, Metall. Mater. Trans. B, 7(1976), No. 3, p. 353. doi: 10.1007/BF02652705
|
[3] |
L. Tian, Y. Liu, T.A. Zhang, G.Z. Lv, S. Zhou, and G.Q. Zhang, Kinetics of indium dissolution from marmatite with high indium content in pressure acid leaching, Rare Met., 36(2017), No. 1, p. 69. doi: 10.1007/s12598-016-0762-z
|
[4] |
L. Tian, Y. Liu, J.J Tang, G.Z. Lü, and T.A. Zhang, Variation law of gas holdup in an autoclave during the pressure leaching process by using a mixed-flow agitator, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 876. doi: 10.1007/s12613-017-1473-7
|
[5] |
F.E.D.L. Santos, R.E. Rivera-Santillan, M. Talavera-Ortega, and F. Bautista, Catalytic and galvanic effects of pyrite on ferric leaching of sphalerite, Hydrometallurgy, 163(2016), p. 167. doi: 10.1016/j.hydromet.2016.04.003
|
[6] |
J.S. Niederkorn, Kinetic study on catalytic leaching of sphalerite, JOM, 37(1985), No. 7, p. 53. doi: 10.1007/BF03259697
|
[7] |
Z.X. Liu, Z.L. Yin, H.P. Hu, and Q.Y. Chen, Catalytic-oxidative leaching of low-grade complex zinc ore by Cu(II) ions produced from copper ore in ammonia-ammonium sulfate solution, Metall. Mater. Trans. B, 43(2012), No. 5, p. 1019. doi: 10.1007/s11663-012-9699-2
|
[8] |
S. Karimi, A. Ghahreman, F. Rashchi, and J. Moghaddam, The mechanism of electrochemical dissolution of sphalerite in sulfuric acid media, Electrochim. Acta, 253(2017), p. 47. doi: 10.1016/j.electacta.2017.09.040
|
[9] |
F. Habashi, Dissolution of minerals and hydrometallurgical processes, Naturwissenschaften, 70(1983), No. 8, p. 403. doi: 10.1007/BF01047177
|
[10] |
Y. Li, N. Kawashima, J. Li, A.P. Chandra, and A.R. Gerson, A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite, Adv. Colloid Interface Sci., 197-198(2013), p. 1. doi: 10.1016/j.cis.2013.03.004
|
[11] |
J. Liu, S.M. Wen, Y.J. Wang, J.S. Deng, and X.M. Chen, Transition state search study on the migraten of Cu absorbed on the S sites of sphalerite (110) surface, Int. J. Miner. Process., 147(2016), p. 28. doi: 10.1016/j.minpro.2015.12.004
|
[12] |
J. Lorenzo-Tallafigo, N. Iglesias-Gonzalez, R. Romero, A. Mazuelos, and F. Carranza, Ferric leaching of the sphalerite contained in a bulk concentrate: Kinetic study, Miner. Eng., 125(2018), p. 50. doi: 10.1016/j.mineng.2018.05.026
|
[13] |
V.V. Zhukov, A. Laari, M. Lampinen, and T. Koiranen, A mechanistic kinetic model for direct pressure leaching of iron containing sphalerite concentrate, Chem. Eng. Res. Des., 118(2017), p. 131. doi: 10.1016/j.cherd.2016.12.004
|
[14] |
S.F. Wang, Z. Fang, S. Long, and Y.G. Chen, Electrogenerative simultaneously leaching of sulfide minerals and MnO2, Nonferrous Met., 56(2004), No. 1, p. 56.
|
[15] |
S.F. Wang, L. Xiao, Z. Fang, G.Z. Qiu, and C.X. Wang, Electrogenerative leaching for sphalerite-MnO2 in the presence of Acidithiobacillus thiooxidans, Trans. Nonferrous Met. Soc. China, 20(2010), No. supplement 1, p. s21.
|
[16] |
M.E. Escudero, F. Gonzalez, M.L. Blázquez, A. Ballester, and C. Gómez, The catalytic effect of some cations on the biological leaching of a Spanish complex sulphide, Hydrometallurgy, 34(1993), No. 2, p. 151. doi: 10.1016/0304-386X(93)90032-9
|
[17] |
C.M. Ai, P.P. Sun, A.X. Wu, X. Chen, and C. Liu, Accelerating leaching of copper ore with surfactant and the analysis of reaction kinetics, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 274. doi: 10.1007/s12613-019-1735-7
|
[18] |
E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, and A. Ballester, Leaching of chalcopyrite with ferric ion. Part III: Effect of redox potential on the silver-catalyzed process, Hydrometallurgy, 93(2008), No. 3-4, p. 97. doi: 10.1016/j.hydromet.2007.11.006
|
[19] |
M.K. Ghosh, R.P. Das, and A.K. Biswas, Oxidative ammonia leaching of sphalerite.Part II: Cu(II)-catalyzed kinetics, Int. J. Miner. Process., 70(2003), No. 1-4, p. 221. doi: 10.1016/S0301-7516(03)00024-3
|
[20] |
A.Ballester, F.González, M.L. Blázquez, and J.L. Mier, The influence of various ions in the bioleaching of metal sulphides, Hydrometallurgy, 23(1990), No. 2-3, p. 221. doi: 10.1016/0304-386X(90)90006-N
|
[21] |
G. Owusu, D.B. Dreisinger, and E. Peters, Effect of surfactants on zinc and iron dissolution rates during oxidative leaching of sphalerite, Hydrometallurgy, 38(1995), No. 3, p. 315. doi: 10.1016/0304-386X(94)00061-7
|
[22] |
G. Owusu, D.B. Dreisinger, and E. Peters, Interfacial effects of surface-active agents under zinc pressure leach conditions, Metall. Mater. Trans. B, 26(1995), No. 1, p. 5. doi: 10.1007/BF02648972
|
[23] |
L. Tian, Z.F. Xu, L.J. Chen, Y. Liu, and T.A. Zhang, Study on oxygen gas holdup and kinetics using various types of paddles during marmatite leaching process, Hydrometallurgy, 180(2018), p. 158. doi: 10.1016/j.hydromet.2018.06.011
|