留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 4
Apr.  2020

图(14)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  1334
  • HTML全文浏览量:  209
  • PDF下载量:  28
  • 被引次数: 0
Jing Mingand Jin-jie Shi, Chloride resistance of Cr-bearing alloy steels in carbonated concrete pore solutions, Int. J. Miner. Metall. Mater., 27(2020), No. 4, pp. 494-504. https://doi.org/10.1007/s12613-019-1920-8
Cite this article as:
Jing Mingand Jin-jie Shi, Chloride resistance of Cr-bearing alloy steels in carbonated concrete pore solutions, Int. J. Miner. Metall. Mater., 27(2020), No. 4, pp. 494-504. https://doi.org/10.1007/s12613-019-1920-8
引用本文 PDF XML SpringerLink
研究论文

含铬合金钢在碳化混凝土孔隙溶液中的抗氯性

  • Research Article

    Chloride resistance of Cr-bearing alloy steels in carbonated concrete pore solutions

    + Author Affiliations
    • The effect of carbonation on the chloride resistance of low-carbon steel and two Cr-bearing alloy steels in simulated concrete pore solutions was investigated. The chloride threshold values of steels were determined on the basis of corrosion potential (Ecorr) and polarization resistance (Rp). Moreover, the chloride-induced corrosion behavior of steels was evaluated using electrochemical impedance spectroscopy, cyclic voltammetry, cathodic potentiodynamic polarization, and scanning electron microscopy/energy dispersive X-ray spectroscopy measurements. Alloy steels have higher chloride resistance than low-carbon steel in carbonated and non-carbonated concrete pore solutions. The chloride resistance of alloy steels improves with increasing Cr content. In addition, the chloride resistance of all steels is negatively affected by the carbonation of concrete pore solution, especially for alloy steel with high Cr content in the presence of high chloride content.

    • loading
    • [1]
      M.F. Montemor, A.M.P. Simões, and M.G.S. Ferreira, Chloride-induced corrosion on reinforcing steel: From the fundamentals to the monitoring techniques, Cem. Concr. Compos., 25(2003), No. 4-5, p. 491. doi: 10.1016/S0958-9465(02)00089-6
      [2]
      U.M. Angst, Challenges and opportunities in corrosion of steel in concrete, Mater. Struct., 51(2018), No. 1, p. 4. doi: 10.1617/s11527-017-1131-6
      [3]
      R.D. Moser, P.M. Singh, L.F. Kahn, and K.E. Kurtis, Chloride-induced corrosion resistance of high-strength stainless steels in simulated alkaline and carbonated concrete pore solutions, Corros. Sci., 57(2012), p. 241. doi: 10.1016/j.corsci.2011.12.012
      [4]
      M. Liu, X.Q. Cheng, X.G. Li, C. Zhou, and H.L. Tan, Effect of carbonation on the electrochemical behavior of corrosion resistance low alloy steel rebars in cement extract solution, Constr. Build. Mater., 130(2017), p. 193. doi: 10.1016/j.conbuildmat.2016.10.003
      [5]
      M. Liu, X.Q. Cheng, X.G. Li, and T.J. Lu, Corrosion behavior of low-Cr steel rebars in alkaline solutions with different pH in the presence of chlorides, J. Electroanal. Chem., 803(2017), p. 40. doi: 10.1016/j.jelechem.2017.09.016
      [6]
      F. Presuel-Moreno, J.R. Scully, and S.R. Sharp, Literature review of commercially available alloys that have potential as low-cost, corrosion-resistant concrete reinforcement, Corrosion, 66(2010), No. 8, p. 086001. doi: 10.5006/1.3479955
      [7]
      M. Liu, X.Q. Cheng, X.G. Li, Y. Pan, and J. Li, Effect of Cr on the passive film formation mechanism of steel rebar in saturated calcium hydroxide solution, Appl. Surf. Sci., 389(2016), p. 1182. doi: 10.1016/j.apsusc.2016.08.074
      [8]
      J.J. Shi, D.Q. Wang, J. Ming, and W. Sun, Long-term electrochemical behavior of low-alloy steel in simulated concrete pore solution with chlorides, J. Mater. Civ. Eng., 30(2018), No. 4, art. No. 04018042.
      [9]
      Y.W. Tian, M. Liu, X.Q. Cheng, C.F. Dong, G. Wang, and X.G. Li, Cr-modified low alloy steel reinforcement embedded in mortar for two years: Corrosion result of marine field test, Cem. Concr. Compos., 97(2019), p. 190. doi: 10.1016/j.cemconcomp.2018.12.019
      [10]
      J.J. Shi and J. Ming, Influence of mill scale and rust layer on the corrosion resistance of low-alloy steel in simulated concrete pore solution, Int. J. Miner. Metall. Mater., 24(2017), No. 1, p. 64. doi: 10.1007/s12613-017-1379-4
      [11]
      J.J. Shi, G.Q. Geng, and J. Ming, Corrosion resistance of fine-grained rebar in mortars designed for high-speed railway construction, Eur. J. Environ. Civ. Eng., 22(2018), No. 5, p. 562. doi: 10.1080/19648189.2016.1210035
      [12]
      J.J. Shi, W. Sun, J.Y. Jiang, and Y.M. Zhang, Influence of chloride concentration and pre-passivation on the pitting corrosion resistance of low-alloy reinforcing steel in simulated concrete pore solution, Constr. Build. Mater., 111(2016), p. 805. doi: 10.1016/j.conbuildmat.2016.02.107
      [13]
      J.K. Singh and D.D.N. Singh, The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH, Corros. Sci., 56(2012), p. 129. doi: 10.1016/j.corsci.2011.11.012
      [14]
      J.J. Shi, J. Ming, and X. Liu, Pitting corrosion resistance of a novel duplex alloy steel in alkali-activated slag extract in the presence of chloride ions, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1134. doi: 10.1007/s12613-017-1504-4
      [15]
      T. Nishimura, Nano structure of the rust formed on chromium bearing steel in concrete after wet and dry corrosion test, ISIJ Int., 55(2015), No. 8, p. 1739. doi: 10.2355/isijinternational.ISIJINT-2015-055
      [16]
      P. Ghods, O.B. Isgor, G.A. Mcrae, and G.P. Gu, Electrochemical investigation of chloride-induced depassivation of black steel rebar under simulated service conditions, Corros. Sci., 52(2010), No. 5, p. 1649. doi: 10.1016/j.corsci.2010.02.016
      [17]
      M. Moreno, W. Morris, M.G. Alvarez, and G.S. Duffó, Corrosion of reinforcing steel in simulated concrete pore solutions: Effect of carbonation and chloride content, Corros. Sci., 46(2004), No. 11, p. 2681. doi: 10.1016/j.corsci.2004.03.013
      [18]
      L.F. Li and A.A. Sagüés, Chloride corrosion threshold of reinforcing steel in alkaline solutions-open-circuit immersion tests, Corrosion, 57(2001), No. 1, p. 19. doi: 10.5006/1.3290325
      [19]
      H.S. Ryu, J.K. Singh, H.S. Lee, M.A. Ismail, and W.J. Park, Effect of LiNO2 inhibitor on corrosion characteristics of steel rebar in saturated Ca(OH)2 solution containing NaCl: An electrochemical study, Constr. Build. Mater., 133(2017), p. 387. doi: 10.1016/j.conbuildmat.2016.12.086
      [20]
      J.J. Shi, J. Ming, and W. Sun, Electrochemical performance of reinforcing steel in alkali-activated slag extract in the presence of chlorides, Corros. Sci., 133(2018), p. 288. doi: 10.1016/j.corsci.2018.01.043
      [21]
      H. Yu, K.K. Chiang, and L.T. Yang, Threshold chloride level and characteristics of reinforcement corrosion initiation in simulated concrete pore solutions, Constr. Build. Mater., 26(2012), No. 1, p. 723. doi: 10.1016/j.conbuildmat.2011.06.079
      [22]
      A. Królikowski and J. Kuziak, Impedance study on calcium nitrite as a penetrating corrosion inhibitor for steel in concrete, Electrochim. Acta, 56(2011), No. 23, p. 7845. doi: 10.1016/j.electacta.2011.01.069
      [23]
      M. Kouřil, P. Novák, and M. Bojko, Threshold chloride concentration for stainless steels activation in concrete pore solutions, Cem. Concr. Res., 40(2010), No. 3, p. 431. doi: 10.1016/j.cemconres.2009.11.005
      [24]
      C. Alonso, C. Andrade, M. Castellote, and P. Castro, Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar, Cem. Concr. Res., 30(2000), No. 7, p. 1047. doi: 10.1016/S0008-8846(00)00265-9
      [25]
      C. Andrade and C. Alonso, Corrosion rate monitoring in the laboratory and on-site, Constr. Build. Mater., 10(1996), No. 5, p. 315. doi: 10.1016/0950-0618(95)00044-5
      [26]
      B. Díaz, B. Guitián, X.R. Nóvoa, and M.C. Pérez, The effect of long-term atmospheric aging and temperature on the electrochemical behaviour of steel rebars in mortar, Corros. Sci., 140(2018), p. 143. doi: 10.1016/j.corsci.2018.06.007
      [27]
      R.G. Duarte, A.S. Castela, R. Neves, L. Freire, and M.F. Montemor, Corrosion behavior of stainless steel rebars embedded in concrete: An electrochemical impedance spectroscopy study, Electrochim. Acta, 124(2014), p. 218. doi: 10.1016/j.electacta.2013.11.154
      [28]
      Y. Zhang and A. Poursaee, Passivation and corrosion behavior of carbon steel in simulated concrete pore solution under tensile and compressive stresses, J. Mater. Civ. Eng., 27(2014), No. 8, art. No. 040142341.
      [29]
      M. Akhoondan and A.A. Sagüés, Comparative cathodic behavior of ~9% Cr and plain steel reinforcement in concrete, Corrosion, 68(2012), No. 4, art. No. 04500301.
      [30]
      S. Poyet, W. Dridi, V. L’Hostis, and D. Meinel, Microstructure and diffusion coefficient of an old corrosion product layer and impact on steel rebar corrosion in carbonated concrete, Corros. Sci., 125(2017), p. 48. doi: 10.1016/j.corsci.2017.06.002

    Catalog


    • /

      返回文章
      返回