留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 3
Mar.  2020

图(10)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2181
  • HTML全文浏览量:  451
  • PDF下载量:  35
  • 被引次数: 0
Parnia Parvizian, Maryam Morakabati,  and Saeed Sadeghpour, Effect of hot rolling and annealing temperatures on the microstructure and mechanical properties of SP-700 alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp. 374-383. https://doi.org/10.1007/s12613-019-1922-6
Cite this article as:
Parnia Parvizian, Maryam Morakabati,  and Saeed Sadeghpour, Effect of hot rolling and annealing temperatures on the microstructure and mechanical properties of SP-700 alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp. 374-383. https://doi.org/10.1007/s12613-019-1922-6
引用本文 PDF XML SpringerLink
研究论文

热轧和退火温度对SP-700合金组织和力学性能的影响

  • Research Article

    Effect of hot rolling and annealing temperatures on the microstructure and mechanical properties of SP-700 alloy

    + Author Affiliations
    • The effect of rolling temperature on both two- and single-phase regions and annealing in a temperature range of 700–950°C on the microstructure and mechanical properties of Ti‒5Al‒4V‒2Fe‒1Mo alloy was investigated. The results indicated that the best balance of strength and ductility is obtained by rolling in the two-phase region due to the globularization of the alpha phase and increase in its volume fraction. After rolling in the two-phase region, the ductility of the specimens annealed at 700 to 800°C increased because of the finer size and globularized alpha phase, while the reduction in strength was attributed to a decrease in the alpha phase volume fraction. However, at 950°C, the strength increased and ductility dropped by the formation of acicular alpha phase due to an increase in the phase boundary area. Annealing and aging after rolling in the beta-phase region increased the strength and decreased the ductility, which is attributed to the formation of a secondary alpha phase. A combination of favorable yield strength (1113 MPa) and elongation (13.3%) was obtained through rolling at 850°C followed by annealing at 750°C and aging at 570°C.

    • loading
    • [1]
      W.C. Chung, L.W. Tsay, and C. Chen, Microstructure and notch properties of heat-treated Ti–4.5Al–3V–2Mo–2Fe laser welds, Mater. Trans., 50(2009), No. 3, p. 544. doi: 10.2320/matertrans.MRA2008370
      [2]
      P. Blenkinsop, Titanium alloys. Advances in alloys, processes, products and applications, J. Phys. IV, 3(1993), p. 161.
      [3]
      Y. Oshida, Bioscience and Bioengineering of Titanium Materials, Elsevier, Oxford, 2010.
      [4]
      L.M. Lei, X. Huang, M.M. Wang, L.Q. Wang, J.N. Qin, H.P. Li, and SQ. Lu, Effect of hot compressive deformation on the martensite transformation of Ti–10V–2Fe–3Al titanium alloy, Mater. Sci. Eng. A, 530(2011), p. 591. doi: 10.1016/j.msea.2011.10.028
      [5]
      L.Q. Wang, J. Qu, L.Y. Chen, Q. Meng, L.C. Zhang, J.N. Qin, D. Zhang, and W.J. Lu, Investigation of deformation mechanisms in β-type Ti–35Nb–2Ta–3Zr alloy via FSP leading to surface strengthening, Metall. Mater. Trans. A, 46(2015), No. 11, p. 4813. doi: 10.1007/s11661-015-3089-8
      [6]
      Z.X. Du, S.L. Xiao, L.J. Xu, J. Tian, F.T. Kong, and Y.Y. Chen, Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy, Mater. Des., 55(2014), p. 183. doi: 10.1016/j.matdes.2013.09.070
      [7]
      B. Gunawarman, M. Niinomi, T. Akahori, J. Takeda, and H. Toda, Mechanical properties of Ti–4.5Al–3V–2Mo–2Fe and possibility for healthcare applications, Mater. Sci. Eng. C, 25(2005), No. 3, p. 296. doi: 10.1016/j.msec.2004.12.012
      [8]
      Z.F. Shi, H.Z. Guo, J.Y. Han, and Z.K. Yao, Microstructure and mechanical properties of TC21 titanium alloy after heat treatment, Trans. Nonferrous Met. Soc. China, 23(2013), No. 10, p. 2882. doi: 10.1016/S1003-6326(13)62810-1
      [9]
      Z.X. Du, S.L. Xiao, Y.P. Shen, J.S. Liu, J. Liu, L.J. Xu, F.T. Kong, and Y.Y. Chen, Effect of hot rolling and heat treatment on microstructure and tensile properties of high strength beta titanium alloy sheets, Mater. Sci. Eng. A, 631(2015), p. 67. doi: 10.1016/j.msea.2015.02.030
      [10]
      G. Lütjering and J.C. Williams, Titanium, Springer, Berlin, Heidelberg, New York, 2003, p. 13.
      [11]
      A.K.M.N. Amin, Titanium Alloys: Towards Achieving Enhanced Properties for Diversified Applications, InTech, Croatia, 2012, p. 111.
      [12]
      S. Sadeghpour, S.M. Abbasi, M. Morakabati, and S. Bruschi, Correlation between alpha phase morphology and tensile properties of a new beta titanium alloy, Mater. Des., 121(2017), p. 24. doi: 10.1016/j.matdes.2017.02.043
      [13]
      G.T. Terlinde, T.W. Duerig, and J.C. Williams, Microstructure, tensile deformation, and fracture in aged Ti–10V–2Fe–3Al, Metall. Trans. A, 14(1983), No. 10, p. 2101. doi: 10.1007/BF02662377
      [14]
      K.N. Kumar, P. Muneshwar, S.K. Singh, A.K. Jha, B. Pant, and K.M. George, Effect of grain boundary alpha on mechanical properties of Ti–5.4Al–3Mo–1V alloy, JOM, 67(2015), No. 6, p. 1265. doi: 10.1007/s11837-015-1443-3
      [15]
      M. Ninomi, D. Eylon, S. Fujishiro, C. Ouchi, and T. Kazino, Improvement in fracture toughness of Ti–4.5Al–3V–2Mo–2Fe through microstructural optimization, Metall. Mater. Trans. A, 34(2003), No. 2, p. 267. doi: 10.1007/s11661-003-0328-1
      [16]
      J.K. Nieh, C.T. Wu, Y.L. Chen, C.N. Wei, and S.L. Lee, Effect of cooling rate during solution heat treatment on the microstructure and mechanical properties of SP-700 titanium alloys, J. Mar. Sci. Technol, 24(2016), No. 2, p. 99.
      [17]
      A.H. Sheikhali, M. Morakkabati, and S.M. Abbasi, Hot torsion behavior of SP-700 near beta titanium alloy in single and dual phase regions, Int. J. Mater. Res., 109(2018), No. 12, p. 1136. doi: 10.3139/146.111715
      [18]
      R. Boyer, E.W. Collings, and G. Welsch, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, 1994, p. 685.
      [19]
      SAE International, ASE Internationla Standard AMS 4964A: Titanium Alloy, Sheet, Strip, and Plate 4.5Al–3V–2Fe –2Mo Annealed, Warrendale, 2011.
      [20]
      ASTM Internationalm, ASTM Standard E1181-02: Standard Test Methods for Characterizing Duplex Grain Size, West Conshohocken, 2015.
      [21]
      S.L. Semiatin, V. Seetharaman, and I. Weiss, The thermomechanical processing of alpha/beta titanium alloys, JOM, 49(1997), No. 6, p. 33. doi: 10.1007/BF02914711
      [22]
      I. Weiss, F.H. Froes, D. Eylon, and G.E. Welsch, Modification of alpha morphology in Ti–6Al–4V by thermomechanical processing, Metall. Mater. Trans. A, 17(1986), No. 11, p. 1935. doi: 10.1007/BF02644991
      [23]
      C.H. Park, J.W. Won, J.W. Park, S. Semiatin, and C.S. Lee, Mechanisms and kinetics of static spheroidization of hot-worked Ti–6Al–2Sn–4Zr–2Mo–0.1Si with a lamellar microstructure, Metall. Mater. Trans. A, 43(2012), No. 3, p. 977. doi: 10.1007/s11661-011-1019-y
      [24]
      S.L. Semiatin, N. Stefansson, and R.D. Doherty, Prediction of the kinetics of static globularization of Ti–6Al–4V, Metall. Mater. Trans. A, 36(2005), No. 5, p. 1372. doi: 10.1007/s11661-005-0229-6
      [25]
      S. Banerjee and P. Mukhopadhyay, Phase Transformations: Examples From Titanium and Zirconium Alloys, Elsevier, Oxford, 2010, p. 148.
      [26]
      A. Gunawarman, M. Niinomi, K.I. Fukunaga, D. Eylon, S. Fujishiro, and C. Ouchi, Fracture characteristics and microstructural factors in single and duplex annealed Ti–4.5Al–3V–2Mo–2Fe, Mater. Sci. Eng. A, 308(2001), No. 1-2, p. 216. doi: 10.1016/S0921-5093(00)01986-9
      [27]
      S. Shekhar, R. Sarkar, S.K. Kar, and A. Bhattacharjee, Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy Ti–5Al–5V–5Mo–3Cr, Mater. Des, 66(2015), p. 596. doi: 10.1016/j.matdes.2014.04.015
      [28]
      J.W. Xu, W.D. Zeng, Y.W. Zhao, Z.Q. Jia, and X. Sun, Effect of globularization behavior of the lamellar alpha on tensile properties of Ti-17 alloy, J. Alloys Compd, 673(2016), p. 86. doi: 10.1016/j.jallcom.2016.02.220
      [29]
      M. Niinomi, K. i. Fukunaga, D. Eylon, S. Fujishiro, and C. Ouchi, Effect of cooling rate on microstructure and fracture characteristics of β-rich α+β type Ti–4.5Al–3V–2Mo–2Fe alloy, Mater. Trans., 42(2001), No. 7, p. 1339. doi: 10.2320/matertrans.42.1339

    Catalog


    • /

      返回文章
      返回