留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 6
Jun.  2020

图(10)

数据统计

分享

计量
  • 文章访问数:  1554
  • HTML全文浏览量:  358
  • PDF下载量:  45
  • 被引次数: 0
Huan-huan Wang, Wen-xiu Liu, Jing Ma, Qian Liang, Wen Qin, Patrick Osei Lartey, and Xiao-jiang Feng, Design of (GO/TiO2)N one-dimensional photonic crystal photocatalysts with improved photocatalytic activity for tetracycline degradation, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 830-839. https://doi.org/10.1007/s12613-019-1923-5
Cite this article as:
Huan-huan Wang, Wen-xiu Liu, Jing Ma, Qian Liang, Wen Qin, Patrick Osei Lartey, and Xiao-jiang Feng, Design of (GO/TiO2)N one-dimensional photonic crystal photocatalysts with improved photocatalytic activity for tetracycline degradation, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 830-839. https://doi.org/10.1007/s12613-019-1923-5
引用本文 PDF XML SpringerLink
研究论文

具有改善四环素降解活性的(GO/TiO2)N一维光子晶体光催化剂的设计

    * 共同第一作者
  • Research Article

    Design of (GO/TiO2)N one-dimensional photonic crystal photocatalysts with improved photocatalytic activity for tetracycline degradation

    + Author Affiliations
    • (GO/TiO2)N (GO represents graphene oxide, and N represents the period number of alternate superposition of two dielectrics) one-dimensional photonic crystal with different lattice constants was prepared via the sol–gel technique, and its transmission characteristics for photocatalysis were tested. The results show that the lattice constant, filling ratio, number of periodic layers, and incident angle had effects on the band gap. When the lattice constant, filling ratio, number of periodic layers, and incident angle were set to 125 nm, 0.45, 21, and 0°, respectively, a gap width of 53 nm appeared at the central wavelength (322 nm). The absorption peak of the photocatalyst at 357 nm overlapped the blue edge of the photonic band gap. A slow photon effect region above 96% reflectivity appeared. The degradation rate of tetracycline in (GO/TiO2)N photonic crystal was enhanced to 64% within 60 min. Meanwhile, the degradation efficiency of (GO/TiO2)N one-dimensional photonic crystal was effectively improved compared with those of the GO/TiO2 composite film and GO/TiO2 powder.

    • loading
    • [1]
      X.B. Chen, L. Liu, P.Y. Yu, and S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331(2011), No. 6018, p. 746. doi: 10.1126/science.1200448
      [2]
      R.Q. Gao, Q. Sun, Z. Fang, G.T. Li, M.Z. Jia, and X.M. Hou, Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 73. doi: 10.1007/s12613-018-1548-0
      [3]
      D.F. Zhang, X.P. Pu, K.P. Du, Y.M. Yu, J.J. Shim, P.Q. Cai, S.I. Kim, and H.J. Seo, Combustion synthesis of magnetic Ag/NiFe2O4 composites with enhanced visible-light photocatalytic properties, Sep. Purif. Technol., 137(2014), p. 82. doi: 10.1016/j.seppur.2014.09.025
      [4]
      R. Kullaiah, L. Elias, and A.C. Hegde, Effect of TiO2 nanoparticles on hydrogen evolution reaction activity of Ni coatings, Int. J. Miner.Metall. Mater., 25(2018), No. 4, p. 472. doi: 10.1007/s12613-018-1593-8
      [5]
      S. Pal, A.R. Yadav, M.A. Lifson, J.E. Baker, P.M. Fauchet, and B.L. Miller, Selective virus detection in complex sample matrices with photonic crystal optical cavities, Biosens. Bioelectron., 44(2013), p. 229. doi: 10.1016/j.bios.2013.01.004
      [6]
      W. Vallejo, A. Rueda, C. Diaz-Uribe, C. Grande, and P. Quintana, Photocatalytic activity of graphene oxide–TiO2 thin films sensitized by natural dyes extracted from Bactris guineensis, Roy. Soc. Open Sci. 6(2019), No. 3, art. No. 181824.
      [7]
      H.P. Qi, H.L. Wang, D.Y. Zhao, and W.F. Jiang, Preparation and photocatalytic activity of Ag-modified GO–TiO2 mesocrystals under visible light irradiation, Appl. Surf. Sci., 480(2019), p. 105. doi: 10.1016/j.apsusc.2019.02.194
      [8]
      G. Collins, E. Armstrong, D. McNulty, S. O’Hanlon, H. Geaney, and C. O’Dwyer, 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion, Sci. Technol. Adv. Mater., 17(2016), No. 1, p. 563. doi: 10.1080/14686996.2016.1226121
      [9]
      G.X. Li, A. Boltasseva, and S. Zouhdi, Feature issue introduction: Metamaterials, photonic crystals and plasmonics, Opt. Mater. Express, 9(2019), No. 5, p. 2400. doi: 10.1364/OME.9.002400
      [10]
      E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., 58(1987), No. 20, p. 2059. doi: 10.1103/PhysRevLett.58.2059
      [11]
      S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett., 58(1987), No. 23, p. 2486. doi: 10.1103/PhysRevLett.58.2486
      [12]
      A.N. Bugay and V.A. Khalyapin, Analytic description of pulse frequency self-shift in nonlinear photonic crystal fibers, Commun. Nonlinear Sci. Numer. Simul., 75(2019), p. 270. doi: 10.1016/j.cnsns.2019.04.004
      [13]
      A.C. Arsenault, D.P. Puzzo, I. Manners, and G.A. Ozin, Photonic-crystal full-colour displays, Nat. Photonics, 1(2007), p. 468. doi: 10.1038/nphoton.2007.140
      [14]
      D.G. Ouzounov, F.R.M. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, and A.L. Gaeta, Generation of megawatt optical solitons in hollow-core photonic band-gap fibers, Science, 301(2003), No. 5640, p. 1702. doi: 10.1126/science.1088387
      [15]
      A. Diamantopoulou, E. Sakellis, G.E. Romanos, S. Gardelis, N. Ioannidis, N. Boukos, P. Falaras, and V. Likodimos, Titania photonic crystal photocatalysts functionalized by graphene oxide nanocolloids, Appl. Catal., 240(2019), p. 277. doi: 10.1016/j.apcatb.2018.08.080
      [16]
      J. Liu, H. Zhao, M. Wu, B. Van der Schueren, Y. Li, O. Deparis, J.H. Ye, G.A. Ozin, T. Hasan, and B.L. Su, Slow photons for photocatalysis and photovoltaics, Adv. Mater., 29(2017), No. 17, p. 1605349. doi: 10.1002/adma.201605349
      [17]
      P. Li, Y. Wang, S.L. Chen, and A.J. Wang, Enhancement of gas–solid photocatalytic activity of nanocrystalline TiO2 by SiO2 opal photonic crystal, J. Mater. Sci., 51(2016), No. 4, p. 2079. doi: 10.1007/s10853-015-9518-7
      [18]
      X.D. Lu, S.X. Lun, T. Zhou, and M. Zhang, A low-cost high-efficiency crystalline silicon solar cell based on one-dimensional photonic crystal front surface textures, J. Opt., 15(2013), No. 7, art. No. 075705.
      [19]
      I. Chopra and M. Roberts, Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance, Microbiol. Mol. Biol. Rev., 65(2001), No. 2, p. 232. doi: 10.1128/MMBR.65.2.232-260.2001
      [20]
      H. Chen, S. Chen, X. Quan, and Y.B. Zhang, Structuring a TiO2-based photonic crystal photocatalyst with Schottky junction for efficient photocatalysis, Environ. Sci. Technol., 44(2010), No. 1, p. 451. doi: 10.1021/es902712j
      [21]
      J.Y. Li, X.A. Dong, Y.J. Sun, W.L. Cen, and F. Dong, Facet-dependent interfacial charge separation and transfer in plasmonic photocatalysts, Appl. Catal. B, 226(2018), p. 269. doi: 10.1016/j.apcatb.2017.12.057
      [22]
      H. Esmaili, A. Kotobi, S. Sheibani, and F. Rashchi, Photocatalytic degradation of methylene blue by nanostructured Fe/FeS powder under visible light, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 244. doi: 10.1007/s12613-018-1567-x
      [23]
      S.N. Li, R.X. Ma, and C.Y. Wang, Solid-phase synthesis of Cu2MoS4 nanoparticles for degradation of methyl blue under a halogen-tungsten lamp, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 310. doi: 10.1007/s12613-018-1574-y
      [24]
      P.M. Bell, J.B. Pendry, L.M. Moreno, and A.J. Ward, A program for calculating photonic band structures and transmission coefficients of complex structures, Comput. Phys. Commun., 85(1995), No. 2, p. 306. doi: 10.1016/0010-4655(94)00131-K
      [25]
      Z. Zhang and S.S. Satpathy, Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations, Phys. Rev. Lett., 65(1990), No. 21, p. 2650. doi: 10.1103/PhysRevLett.65.2650
      [26]
      A.J. Ward and J.B. Pendry, Calculating photonic Green’s functions using a nonorthogonal finite-difference time-domain method, Phys. Rev. B, 58(1998), No. 11, p. 7252. doi: 10.1103/PhysRevB.58.7252
      [27]
      C. Yao, Fabrication of Titania/Graphene Oxide One-Dimensional Photonic Crystals and Research of Theirs Applications [Dissertation], Southeast University, Nanjing, 2015, p. 88.
      [28]
      A.M. Ahmed and A. Mehaney, Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region, Sci. Rep., 9(2019), No. 1, art. No. 6973.
      [29]
      Y.I. Wang, S. Liu, and S.Y.Zhong, Tunable multichannel terahertz filtering properties of dielectric defect layer in one-dimensional magnetized plasma photonic crystal, Opt. Commun., 473(2020), art. No. 125985.
      [30]
      Z. Li, Z. Ge, X.Y. Zhang, Z.Y. Hu, D. Zhao, and J.W. Wu, Analysis of photonic band gaps in metamaterial-based one-dimensional ternary photonic crystals, Indian J. Phys., 93(2019), No. 4, p. 511. doi: 10.1007/s12648-018-1320-3
      [31]
      M. Libman, N.M. Kondratyev, and M.L. Gorodetsky, Semi-analytical model for a slab one-dimensional photonic crystal, AIP Conference Proceedings, 1936(2018), No. 1, art. No. 020004.
      [32]
      M.I. Wafa, Y.M. EI-Batawy, and S.A. EI-Naggar, Stochastic analysis for one dimensional photonic crystals, Optik, 208(2020), art. No. 164106.
      [33]
      X. Zhang, Study on the Optical Properties of TiO2/Metal(Dioxide) Multilayer Films [Dissertation], Taiyuan University of Technology, Taiyuan, 2012, p. 70.
      [34]
      B.F. Mohazzab, B. Jaleh, M. Nasrollahzadeh, Z. Issaabadi, and R.S. Varma, Laser ablation-assisted synthesis of GO/TiO2/Au nanocomposite: Applications in K3[Fe(CN)6] and Nigrosin reduction, Mol. Catal., 473(2019), art. No. 110401.
      [35]
      W.W. Zhang, J.Y. Zhang, Z.Y. Chen, and T.M. Wang, Photocatalytic degradation of methylene blue by ZnGa2O4 thin films, Catal. Commun., 10(2009), No. 13, p. 1781. doi: 10.1016/j.catcom.2009.06.004

    Catalog


    • /

      返回文章
      返回