留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 2
Feb.  2020

图(12)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1682
  • HTML全文浏览量:  437
  • PDF下载量:  47
  • 被引次数: 0
Fei Zhao, Rong Zhu, and Wen-rui Wang, Characteristics of a coherent jet enshrouded in a supersonic fuel gas, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 173-180. https://doi.org/10.1007/s12613-019-1928-0
Cite this article as:
Fei Zhao, Rong Zhu, and Wen-rui Wang, Characteristics of a coherent jet enshrouded in a supersonic fuel gas, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 173-180. https://doi.org/10.1007/s12613-019-1928-0
引用本文 PDF XML SpringerLink
研究论文

环绕超音速燃气流的集束射流特性

  • Research Article

    Characteristics of a coherent jet enshrouded in a supersonic fuel gas

    + Author Affiliations
    • Based on a current coherent jet, this study proposes a supersonic combustion (SC) coherent jet in which the main oxygen jet is surrounded by a supersonic fuel gas. The characteristics of the proposed coherent jet are analyzed using experimental methods and numerical simulations in the high-temperature environment of electric arc furnace (EAF) steelmaking. The SC coherent jet achieved stable combustion in the EAF steelmaking environment. The simulated combustion temperature of the supersonic shrouding methane gas was 2930 K, slightly below the theoretical combustion temperature of methane–oxygen gas. The high speed and temperature of the supersonic flame effectively weakened the interaction between the main oxygen jet and the external ambient gas, inhibiting the radial expansion of the main oxygen jet and maintaining its high speed and low turbulence over a long distance. These features improved the impact capacity of the coherent jet and strengthened the stirring intensity in the EAF bath.

    • loading
    • [1]
      K. Dong, G.S. Wei, J. Chang, and R.F. Su, Fluid flow characteristics of molten bath with bottom-blowing in EAF steelmaking, Chin. J. Eng., 40(2018), No. S1, p. 96.
      [2]
      K. Dong, R. Zhu, W. Gao, and F.H. Li, Simulation of three-phase flow and lance height effect on the cavity shape, Int. J. Miner. Metall. Mater., 21(2014), No. 6, p. 523. doi: 10.1007/s12613-014-0938-1
      [3]
      Y.H. Li, Y.P. Bao, R. Wang, L.F. Ma, and J.S. Liu, Modeling study on the flow patterns of gas–liquid flow for fast decarburization during the RH process, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 153. doi: 10.1007/s12613-018-1558-y
      [4]
      F.H. Liu, G.S. Wei, R. Zhu, T.P. Tang, J, Chang, R.F. Su, and R.Z. Liu, Study of penetration depth characteristics of coherent jet in EAF steelmaking, Chin. J. Eng., 40(2018), No. S1, p. 133.
      [5]
      X.B Zhou, M. Ersson, L.C. Zhong, and P. Jönsson, Numerical simulations of the kinetic energy transfer in the bath of a BOF converter, Metall. Mater. Trans. B, 47(2016), No. 1, p. 434. doi: 10.1007/s11663-015-0465-0
      [6]
      Q. Li, M.M. Li, S.B. Kuang, and Z.S. Zou, Numerical simulation of the interaction between supersonic oxygen jets and molten slag–metal bath in steelmaking BOF process, Metall. Mater. Trans. B, 46(2015), No. 3, p. 1494. doi: 10.1007/s11663-015-0292-3
      [7]
      M. Lü, R. Zhu, H. Wang, and R.G. Bai, Simulation and application of swirl-type oxygen lance in vanadium extraction converter, Steel Res. Int., 84(2013), No. 3, p. 304. doi: 10.1002/srin.201200136
      [8]
      M. Alam, J. Naser, G. Brooks, and A. Fontana, A computational fluid dynamics model of shrouded supersonic jet impingement on a water surface, ISIJ Int., 52(2012), No. 6, p. 1026. doi: 10.2355/isijinternational.52.1026
      [9]
      G.W. Tang, Y.C. Chen, A.K. Silaen, Y. Krotov, M.F. Riley, and C.Q. Zhou, Effects of fuel input on coherent jet length at various ambient temperatures, Appl. Therm. Eng., 153(2019), p. 513. doi: 10.1016/j.applthermaleng.2019.03.019
      [10]
      G.W. Tang, Y.C. Chen, A.K. Silaen, Y. Krotov, M.F. Riley, and C.Q. Zhou, Investigation on coherent jet potential core length in an electric arc furnace, Steel Res. Int., 90(2019), No. 4, art. No. 1800381.
      [11]
      I. Sumi, Y. Kishimoto, Y. Kikuchi, and H. Igarashi, Effect of high-temperature field on supersonic oxygen jet behavior, ISIJ Int., 46(2006), No. 9, p. 1312. doi: 10.2355/isijinternational.46.1312
      [12]
      I. Sumi, G. Okuyama, S. Nabeshima, H. Matsuno, and Y. Kishimoto, Behavior of top-blown jet under reduced pressure, ISIJ Int., 47(2007), No. 1, p. 73. doi: 10.2355/isijinternational.47.73
      [13]
      F. Zhao, D.B. Sun, R. Zhu, and L.Z. Yang, Effect of shrouding gas parameters on characteristics of supersonic coherent jet, Metall. Mater. Trans. B, 48(2017), No. 3, p. 1807. doi: 10.1007/s11663-017-0931-y
      [14]
      F.H. Liu, D.B. Sun, R. Zhu, and S.Y. Hu, Effect of shrouding Mach number and ambient temperature on the flow field of coherent jet with shrouding Laval nozzle structure, Can. Metall. Q., 58(2019), No. 1, p. 96. doi: 10.1080/00084433.2018.1522815
      [15]
      F.H. Liu, D.B. Sun, R. Zhu, and Y.L. Li, Effect of shrouding gas temperature on characteristics of a supersonic jet flow field with a shrouding laval nozzle structure, Metall. Mater. Trans. B, 49(2018), No. 4, p. 2050. doi: 10.1007/s11663-018-1272-1
      [16]
      J.D. Anderson, Introduction to Flight, 8th ed., McGraw-Hill Education, 2016, p. 47.
      [17]
      F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32(1994), No. 8, p. 1598. doi: 10.2514/3.12149
      [18]
      X. Zhao, H.L. Zhao, L.F. Zhang, L.F. Zhang, and L.Q. Yang, Gas–liquid mass transfer and flow phenomena in the Peirce–Smith converter: a water model study, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 37. doi: 10.1007/s12613-018-1544-4
      [19]
      F. Zhao, Y.L. Zhang, R. Zhu, and H. Wang, Turbulence model in supersonic jet flow field, J. Univ. Sci. Technol. Beijing, 36(2014), No. 3, p. 366. doi: 10.13374/j.issn1001-053x.2014.03.014
      [20]
      F. Liu, R. Zhu, K. Dong, and S. Hu, Flow field characteristics of coherent jet with preheating oxygen under various ambient temperatures, ISIJ Int., 56(2016), No. 9, p. 1519. doi: 10.2355/isijinternational.ISIJINT-2015-464
      [21]
      Z.C. Gao, Flame temperature from CH4 combustion reaction, J. Shanxi Univ. Nat. Sci. Ed., 27(2004), No. 1, p. 32.

    Catalog


    • /

      返回文章
      返回