Cite this article as: |
Faramarz Kazemi, Farzin Arianpour, Mahdiar Taheri, Ali Saberi, and Hamid Reza Rezaie, Effects of chelating agents on the sol−gel synthesis of nano-zirconia: Comparison of the Pechini and sugar-based methods, Int. J. Miner. Metall. Mater., 27(2020), No. 5, pp. 693-702. https://doi.org/10.1007/s12613-019-1933-3 |
This study focused on the comparison of the Pechini and sugar-based combustion synthesis methods to produce nano-zirconia. Zirconium hydroxide was utilized as metal precursor and citric acid, sucrose, and fructose were used as chelating agents, followed by calcination at 500, 600, and 700°C in air, respectively. Characterization was conducted by thermal analysis, specific surface area measurement, Fourier transform infrared spectroscopy, X-ray diffraction, and scanning and transmission electron microscopy. When sucrose and citric acid were used as chelating agents during synthesis, mixtures of monoclinic and tetragonal phases were formed after calcination at 600 and 700°C. In the fructose samples, the tetragonal structure was the unique characterized phase. The tetragonal parameters in the fructose samples were determined using the diffraction data and the lattice parameter ratio was proven to increase with the temperature increase. Compared with the citrate and sucrose samples, the largest specific surface area (27 m2·g−1) and smallest particle size (39.1 nm) were obtained for the fructose sample after calcination at 700°C. The study revealed the formation of single-phase stabilized tetragonal zirconia using fructose as chelating agent after calcination at 500°C, and the presence and formation mechanism of stabilized tetragonal phase were also discussed on the basis of the X-ray and electron diffraction studies.
[1] |
F. Petrakli, M. Arkas, and A. Tsetsekou, α-alumina nanospheres from nano-dispersed boehmite synthesized by a wet chemical route, J. Am. Ceram. Soc., 101(2018), No. 8, p. 3508. doi: 10.1111/jace.15487
|
[2] |
K. Agilandeswari and A.R. Kumar, Optical, electrical properties, characterization and synthesis of Ca2Co2O5 by sucrose assisted sol–gel combustion method, Adv. Powder Technol., 25(2014), No. 3, p. 904. doi: 10.1016/j.apt.2014.01.006
|
[3] |
C. Suciu, A.C. Hoffmann, A. Vik, and F. Goga, Effect of calcination conditions and precursor proportions on the properties of YSZ nanoparticles obtained by modified sol–gel route, Chem. Eng. J., 138(2008), No. 1-3, p. 608. doi: 10.1016/j.cej.2007.09.020
|
[4] |
K. Prabhakaran, A. Melkeri, N.M. Gokhale, and S.C. Sharma, Synthesis of nanocrystalline 8mol% yttria stabilized zirconia powder from sucrose derived organic precursors, Ceram. Int., 33(2007), No. 8, p. 1551. doi: 10.1016/j.ceramint.2006.07.002
|
[5] |
Y.J. Wu, A. Bandyopadhyay, and S. Bose, Processing of alumina and zirconia nano-powders and compacts, Mater. Sci. Eng. A, 380(2004), No. 1-2, p. 349. doi: 10.1016/j.msea.2004.04.036
|
[6] |
P.S. Behera, S. Bhattacharyya, and R. Sarkar, Effect of citrate to nitrate ratio on the sol–gel synthesis of nanosized α-Al2O3 powder, Ceram. Int., 43(2017), No. 17, p. 15221. doi: 10.1016/j.ceramint.2017.08.057
|
[7] |
R.E. Juárez, D.G. Lamas, G.E. Lascalea, and N.E.W. de Reca, Synthesis of nanocrystalline zirconia powders for TZP ceramics by a nitrate–citrate combustion route, J. Eur. Ceram. Soc., 20(2000), No. 2, p. 133. doi: 10.1016/S0955-2219(99)00146-6
|
[8] |
J. Yang, J.S. Lian, Q.Z. Dong, Q.F. Guan, J.W. Chen, and Z.X. Guo, Synthesis of YSZ nanocrystalline particles via the nitrate–citrate combustion route using diester phosphate (PE) as dispersant, Mater. Lett., 57(2003), No. 19, p. 2792. doi: 10.1016/S0167-577X(02)01376-9
|
[9] |
K.A. Singh, L.C. Pathak, and S.K. Roy, Effect of citric acid on the synthesis of nano-crystalline yttria stabilized zirconia powders by nitrate–citrate process, Ceram. Int., 33(2007), No. 8, p. 1463. doi: 10.1016/j.ceramint.2006.05.021
|
[10] |
J.C. Ray, P. Pramanik, and S. Ram, A novel polymer matrix method for synthesizing ZrO2 nanocrystals at moderate temperature, J. Mater. Sci. Lett., 20(2001), p. 2017. doi: 10.1023/A:1013513318102
|
[11] |
A. Majedi, F. Davar, and A. Abbasi, Sucrose-mediated sol–gel synthesis of nanosized pure and S-doped zirconia and its catalytic activity for the synthesis of acetyl salicylic acid, J. Ind. Eng. Chem., 20(2014), No. 6, p. 4215. doi: 10.1016/j.jiec.2014.01.023
|
[12] |
H.Y. Zhu, B. Liu, M.M. Shen, Y. Kong, X. Hong, Y.H. Hu, W.P. Ding, L. Dong, and Y. Chen, Effect of maltose for the crystallization of tetragonal zirconia, Mater. Lett., 58(2004), No. 25, p. 3107. doi: 10.1016/j.matlet.2004.05.050
|
[13] |
F. Heshmatpour and R.B. Aghakhanpour, Synthesis and characterization of nanocrystalline zirconia powder by simple sol–gel method with glucose and fructose as organic additives, Powder Technol., 205(2011), No. 1-3, p. 193. doi: 10.1016/j.powtec.2010.09.011
|
[14] |
R.D. Purohit, S. Saha, and A.K. Tyagi, Combustion synthesis of nanocrystalline ZrO2 powder: XRD, Raman spectroscopy and TEM studies, Mater. Sci. Eng. B, 130(2006), No. 1-3, p. 57. doi: 10.1016/j.mseb.2006.02.041
|
[15] |
M.M. Rashad and H.M. Baioumy, Effect of thermal treatment on the crystal structure and morphology of zirconia nanopowders produced by three different routes, J. Mater. Process. Technol., 195(2008), No. 1-3, p. 178. doi: 10.1016/j.jmatprotec.2007.04.135
|
[16] |
F. Maglia, M. Dapiaggi, I. Tredici, B. Maroni, and U. Anselmi-Tamburini, Synthesis of fully dense nanostabilized undoped tetragonal zirconia, J. Am. Ceram. Soc., 93(2010), No. 7, p. 2092.
|
[17] |
F. Davar, A. Hassankhani, and M.R. Loghman-Estarki, Controllable synthesis of metastable tetragonal zirconia nanocrystals using citric acid assisted sol–gel method, Ceram. Int., 39(2013), No. 3, p. 2933. doi: 10.1016/j.ceramint.2012.09.067
|
[18] |
V.V. Srdić, M. Winterer, and H. Hahn, Sintering behavior of nanocrystalline zirconia prepared by chemical vapor synthesis, J. Am. Ceram. Soc., 83(2004), No. 4, p. 729. doi: 10.1111/j.1151-2916.2000.tb01266.x
|
[19] |
N. Nafsin, H. Li, E.W. Leib, T. Vossmeyer, P. Stroeve, and R.H.R. Castro, Stability of rare-earth-doped spherical yttria-stabilized zirconia synthesized by ultrasonic spray pyrolysis, J. Am. Ceram. Soc., 100(2017), No. 10, p. 4425. doi: 10.1111/jace.14971
|
[20] |
J. Joo, T. Yu, Y.W. Kim, H.M. Park, F.X. Wu, J.Z. Zhang, and T. Hyeon, Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals, J. Am. Chem. Soc., 125(2003), No. 21, p. 6553. doi: 10.1021/ja034258b
|
[21] |
N. Chandra, D.K. Singh, M. Sharma, R.K. Upadhyay, S.S. Amritphale, and S.K. Sanghi, Synthesis and characterization of nano-sized zirconia powder synthesized by single emulsion-assisted direct precipitation, J. Colloid Interface Sci., 342(2010), No. 2, p. 327. doi: 10.1016/j.jcis.2009.10.065
|
[22] |
U.K.H. Bangi, C.S. Park, S. Baek, and H.H. Park, Sol–gel synthesis of high surface area nanostructured zirconia powder by surface chemical modification, Powder Technol., 239(2013), p. 314. doi: 10.1016/j.powtec.2013.02.014
|
[23] |
S. Shukla, S. Seal, R. Vij, and S. Bandyopadhyay, Effect of HPC and water concentration on the evolution of size, aggregation and crystallization of sol–gel nano zirconia, J. Nanopart. Res., 4(2002), p. 553. doi: 10.1023/A:1022886518620
|
[24] |
C. Suchomski, D.J. Weber, P. Dolcet, A. Hofmann, P. Voepel, J. Yue, M. Einert, M. Möller, S. Werner, S. Gross, I. Djerdj, T. Brezesinski, and B.M. Smarsly, Sustainable and surfactant-free high-throughput synthesis of highly dispersible zirconia nanocrystals, J. Mater. Chem. A, 5(2017), No. 31, p. 16296. doi: 10.1039/C7TA02316B
|
[25] |
F. Kazemi, S. Sohrabi, S. Malek-Ahmadi, H.R. Rezaie, and S.R. Allahkaram, Synthesis of metastable tetragonal zirconia nanopowder during extraction of zirconia from zircon by alkaline fusion process, [in] The International Conference on Ultrafine Grained and Nanostructured Materials, Tehran, Iran, 2007, p.75.
|
[26] |
R. Jenkins and R.L. Snyder, Introduction to X-Ray Powder Diffractometry, 2nd ed., John Wiley & Sons, New York, 2012, p. 25.
|
[27] |
A. Saberi, B. Alinejad, Z. Negahdari, F. Kazemi, and A. Almasi, A novel method to low temperature synthesis of nanocrystalline forsterite, Mater. Res. Bull., 42(2007), No. 4, p. 666. doi: 10.1016/j.materresbull.2006.07.020
|
[28] |
M. Bashir, S. Riaz, Z.N. Kayani, S. Naseem, Synthesis of bone implant substitutes using organic additive based zirconia nanoparticles and their biodegradation study, J. Mech. Behav. Biomed. Mater., 88(2018), p. 48. doi: 10.1016/j.jmbbm.2018.07.035
|
[29] |
K.A. Aly, N.M. Khalil, Y. Algamal, and Q.M.A. Saleem, Estimation of lattice strain for zirconia nano-particles based on Williamson-Hall analysis, Mater. Chem. Phys., 193(2017), p. 182. doi: 10.1016/j.matchemphys.2017.01.059
|
[30] |
C.J. Szepesi and J.H. Adair, High yield hydrothermal synthesis of nano-scale zirconia and YTZP, J. Am. Ceram. Soc., 94(2011), No. 12, p. 4239. doi: 10.1111/j.1551-2916.2011.04806.x
|
[31] |
J.C.D. da Costa, S. Coombs, J. Lim, and G.Q. Lu, Characterization of xerogels derived from sucrose templated sol–gel synthesis, J. Sol–Gel Sci. Technol., 31(2004), No. 1-3, p. 215. doi: 10.1023/B:JSST.0000047990.55090.c5
|
[32] |
R. Mahendran, S.P.K. Babu, S. Natarajan, S. Manivannan, and A. Vallimanalan, Phase transformation and crystal growth behavior of 8mol% (SmO1.5, GdO1.5, and YO1.5) stabilized ZrO2 powders, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 842. doi: 10.1007/s12613-017-1468-4
|
[33] |
Y.L. Zhang, X.J. Jin, Y.H. Rong, T.Y. Hsu, D.Y. Jiang, and J.L. Shi, The size dependence of structural stability in nano-sized ZrO2 particles, Mater. Sci. Eng. A, 438-440(2006), p. 399. doi: 10.1016/j.msea.2006.03.109
|
[34] |
F. Kazemi, A. Saberi, S. Malek-Ahmadi, S. Sohrabi, H.R. Rezaie, and M. Tahriri, A novel method for synthesis of metastable tetragonal zirconia nanopowders at low temperatures, Ceram. Silik., 55(2011), No. 1, p. 26.
|
[35] |
C.C. Koch, Nanostructured Materials, Processing, Properties and Potential Applications, William Andrew, New York, 2002, p. 4.
|
[36] |
R.N. Das, A. Bandyopadhyay, and S. Bose, Nanocrystalline α-Al2O3 using sucrose, J. Am. Ceram. Soc., 84(2004), No. 10, p. 2421. doi: 10.1111/j.1151-2916.2001.tb01024.x
|
[37] |
A. Srivastava and M.K. Dongare, Low-temperature preparation of tetragonal zirconia, Mater. Lett., 5(1987), No. 3, p. 111. doi: 10.1016/0167-577X(87)90086-3
|
[38] |
A. Majedi, A. Abbasi, and F. Davar, Green synthesis of zirconia nanoparticles using the modified Pechini method and characterization of its optical and electrical properties, J. Sol–Gel Sci. Technol., 77(2016), No. 3, p. 542. doi: 10.1007/s10971-015-3881-3
|
[39] |
E. Djurado and E. Meunier, Synthesis of doped and un-doped nano powders of tetragonal polycrystalline zirconia (TPZ) by spray-pyrolysis, J. Solid State Chem., 141(1998), No. 1, p. 191. doi: 10.1006/jssc.1998.7946
|
[40] |
A. Bumajdad, A.A. Nazeer, F.A.I. Sagheer, S. Nahar, and M.I. Zaki, Controlled synthesis of ZrO2 nanoparticles with tailored size, morphology and crystal phases via organic/inorganic hybrid films, Sci. Rep., 8(2018), art. No. 3695.
|
[41] |
X. Zou, S. Hovmöller, and P. Oleynikov, Electron Crystallography: Electron Microscopy and Electron Diffraction, Oxford University Press, Oxford, 2011, p. 98.
|