留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 6
Jun.  2020

图(10)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1738
  • HTML全文浏览量:  400
  • PDF下载量:  75
  • 被引次数: 0
Xue-liang Zhang, Shu-feng Yang, Jing-she Li, and Jin-qiang Wu, Temperature-dependent evolution of oxide inclusions during heat treatment of stainless steel with yttrium addition, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 754-763. https://doi.org/10.1007/s12613-019-1935-1
Cite this article as:
Xue-liang Zhang, Shu-feng Yang, Jing-she Li, and Jin-qiang Wu, Temperature-dependent evolution of oxide inclusions during heat treatment of stainless steel with yttrium addition, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 754-763. https://doi.org/10.1007/s12613-019-1935-1
引用本文 PDF XML SpringerLink
研究论文

添加钇不锈钢热处理过程中其氧化物夹杂物的温度依赖性演化

  • Research Article

    Temperature-dependent evolution of oxide inclusions during heat treatment of stainless steel with yttrium addition

    + Author Affiliations
    • The evolution of oxide inclusions during isothermal heating of 18Cr–8Ni stainless steel with yttrium addition at temperatures of 1273 to 1573 K was investigated systematically. Homogeneous spherical Al–Y–Si(–Mn–Cr) oxide inclusions were observed in as-cast steel. After heating, most of the homogeneous inclusions were transformed into heterogeneous inclusions with Y-rich and Al-rich parts, even though some homogeneous oxide particles were still observed at 1273 and 1573 K. With the increase in heating temperature, more large-sized inclusions were formed. The shape of the inclusions also changed from spherical to irregular. The maximum transformation temperature of inclusions was determined to be 1373 K. The evolution mechanism of inclusions during heating was proposed to be the combined effect of the (i) internal transformation of inclusions due to the crystallization of glassy oxide and (ii) interfacial reaction between inclusions and steel matrix. Meanwhile, the internal transformation of inclusions was considered to be the main factor at heating temperatures less than 1473 K.

    • loading
    • [1]
      S.F. Yang, Q.Q. Wang, L.F. Zhang, J.S. Li, and K. Peaslee, Formation and modification of MgO·Al2O3-based inclusions in alloy steels, Metall. Mater. Trans. B, 43(2012), No. 4, p. 731. doi: 10.1007/s11663-012-9663-1
      [2]
      J.H. Park and H. Todoroki, Control of MgO·Al2O3 spinel inclusions in stainless steels, ISIJ Int., 50(2010), No. 10, p. 1333. doi: 10.2355/isijinternational.50.1333
      [3]
      J.Y. Choi, S.K. Kim, Y.B. Kang, and H.G. Lee, Compositional evolution of oxide inclusions in austenitic stainless steel during continuous casting, Steel Res. Int., 86(2015), No. 3, p. 284. doi: 10.1002/srin.201300486
      [4]
      J.H. Park, S.B. Lee, and D.S. Kim, Inclusion control of ferritic stainless steel by aluminum deoxidation and calcium treatment, Metall. Mater. Trans. B, 36(2005), No. 1, p. 67. doi: 10.1007/s11663-005-0007-2
      [5]
      C. Gu, Y.P. Bao, P. Gan, M. Wang, and J.S. He, Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 623. doi: 10.1007/s12613-018-1609-4
      [6]
      R. Wang, Y.P. Bao, Z.J. Yan, D.Z. Li, and Y. Kang, Comparison between the surface defects caused by Al2O3 and TiN inclusions in interstitial-free steel auto sheets, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 178. doi: 10.1007/s12613-019-1722-z
      [7]
      A. Vahed and D.A.R. Kay, Thermodynamics of rare earths in steelmaking, Metall. Trans. B, 7(1976), No. 3, p. 375. doi: 10.1007/BF02652708
      [8]
      P.E. Waudby, Rare earth additions to steel, Int. Met. Rev., 23(1978), No. 1, p. 74. doi: 10.1179/imr.1978.23.1.74
      [9]
      Q.L. Li, H.R. Zhang, M. Gao, J.P. Li, T.X. Tao, and H. Zhang, Mechanisms of reactive element Y on the purification of K4169 superalloy during vacuum induction melting, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 696. doi: 10.1007/s12613-018-1617-4
      [10]
      J.Z. Gao, P.X. Fu, H.W. Liu, and D.Z. Li, Effects of rare earth on the microstructure and impact toughness of H13 steel, Metals, 5(2015), No. 1, p. 383. doi: 10.3390/met5010383
      [11]
      J. Lan, J.J. He, W. Ding, Q.D. Wang, and Y.P. Zhu, Effect of rare earth metals on the microstructure and impact toughness of a cast 0.4C–5Cr–1.2Mo–1.0V steel, ISIJ Int., 40(2000), No. 12, p. 1275. doi: 10.2355/isijinternational.40.1275
      [12]
      S.T. Kim, S.H. Jeon, I.S. Lee, and Y.S. Park, Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel—Part 1, Corros. Sci., 52(2010), No. 6, p. 1897. doi: 10.1016/j.corsci.2010.02.043
      [13]
      S.K. Kwon, J.S. Park, and J.H. Park, Influence of refractory-steel interfacial reaction on the formation behavior of inclusions in Ce-containing stainless steel, ISIJ Int., 55(2015), No. 12, p. 2589. doi: 10.2355/isijinternational.ISIJINT-2015-125
      [14]
      S.J. Kim, K.M. Ryu, and M.S. Oh, Addition of cerium and yttrium to ferritic steel weld metal to improve hydrogen trapping efficiency, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 415. doi: 10.1007/s12613-017-1422-5
      [15]
      A. Katsumata and H. Todoroki, Effect of rare earth metal on inclusion composition in molten stainless steel, Iron Steelmaker, 29(2002), No. 7, p. 51.
      [16]
      T. Dan and K. Gunji, Deoxidation Characteristics and shape modification of deoxidation products with Al–Ce and Al–Y complex deoxidizers, Tetsu-to-Hagané, 68(1982), No. 14, p. 1915. doi: 10.2355/tetsutohagane1955.68.14_1915
      [17]
      Y.D. Li, C.J. Liu, T.S. Zhang, M.F. Jiang, and C. Peng, Inclusions modification in heat resistant steel containing rare earth elements, Ironmaking Steelmaking, 45(2018), No. 1, p. 76. doi: 10.1080/03019233.2016.1241518
      [18]
      Y.D. Li, C.J. Liu, T.S. Zhang, M.F. Jiang, and C. Peng, Liquid inclusions in heat-resistant steel containing rare earth elements, Metall. Mater. Trans. B, 48(2017), No. 2, p. 956. doi: 10.1007/s11663-016-0873-9
      [19]
      M. Nabeel, A. Karasev, and P. Jönsson, Formation and growth mechanism of clusters in liquid REM-alloyed stainless steels, ISIJ Int., 55(2015), No. 11, p. 2358. doi: 10.2355/isijinternational.ISIJINT-2015-293
      [20]
      Y.Y. Bi, A.V. Karasev, and P.G. Jönsson, Three dimensional evaluations of REM clusters in stainless steel, ISIJ Int., 54(2014), No. 6, p. 1266. doi: 10.2355/isijinternational.54.1266
      [21]
      I. Takahashi, T. Sakae, and T. Yoshida, Changes of the nonmetallic inclusion by heating, Tetsu-to-Hagané, 53(1967), No. 3, p. 350. doi: 10.2355/tetsutohagane1955.53.3_350
      [22]
      H. Shibata, T. Tanaka, K. Kimura, and S. Kitamura, Composition change in oxide inclusions of stainless steel by heat treatment, Ironmaking Steelmaking, 37(2010), No. 7, p. 522. doi: 10.1179/030192310X12700328925903
      [23]
      H. Shibata, K. Kimura, T. Tanaka, and S.Y. Kitamura, Mechanism of change in chemical composition of oxide inclusions in Fe–Cr Alloys deoxidized with Mn and Si by heat treatment at 1473 K, ISIJ Int., 51(2011), No. 12, p. 1944. doi: 10.2355/isijinternational.51.1944
      [24]
      Y. Ren, L.F. Zhang, and P.C. Pistorius, Transformation of oxide inclusions in type 304 stainless steels during heat treatment, Metall. Mater. Trans. B, 48(2017), No. 5, p. 2281. doi: 10.1007/s11663-017-1007-8
      [25]
      M.G. Li, H. Matsuura, and F. Tsukihashi, Evolution of Al–Ti oxide inclusion during isothermal heating of Fe–Al–Ti Alloy at 1573 K (1300°C), Metall. Mater. Trans. B, 48(2017), No. 3, p. 1915. doi: 10.1007/s11663-017-0968-y
      [26]
      M.G. Li, H. Matsuura, and F. Tsukihashi, Time-dependent evolution of Ti-bearing oxide inclusions during isothermal holding at 1573 K (1300°C), Metall. Mater. Trans. A, 50(2019), No. 2, p. 863. doi: 10.1007/s11661-018-5015-3
      [27]
      X.D. Zou, D.P. Zhao, J.C. Sun, C. Wang, and H. Matsuura, An integrated study on the evolution of inclusions in EH36 shipbuilding steel with Mg addition: From casting to welding, Metall. Mater. Trans. B, 49(2018), No. 2, p. 481. doi: 10.1007/s11663-017-1163-x
      [28]
      X.D. Zou, J.C. Sun, H. Matsuura, and C. Wang, In situ observation of the nucleation and growth of ferrite laths in the heat-affected zone of EH36-Mg shipbuilding steel subjected to different heat inputs, Metall. Mater. Trans. B, 49(2018), No. 5, p. 2168. doi: 10.1007/s11663-018-1326-4
      [29]
      J.B. Yan, Y.M. Gao, L. Liang, Z.Z. Ye, Y.F. Li, W. Chen, and J.J. Zhang, Effect of yttrium on the cyclic oxidation behaviour of HP40 heat-resistant steel at 1373 K, Corros. Sci., 53(2011), No. 1, p. 329. doi: 10.1016/j.corsci.2010.09.039
      [30]
      L. Chen, X.C. Ma, L.M. Wang, and X.N. Ye, Effect of rare earth element yttrium addition on microstructures and properties of a 21Cr–11Ni austenitic heat-resistant stainless steel, Mater. Des., 32(2011), No. 4, p. 2206. doi: 10.1016/j.matdes.2010.11.022
      [31]
      Y. Murakami and H. Yamamoto, Phase equilibria in Al2O3–Y2O3–SiO2 system and phase separation and crystallization behavior of glass, J. Ceram. Soc. Jpn., 99(1991), No. 1147, p. 215. doi: 10.2109/jcersj.99.215
      [32]
      S. Ahmad, T. Ludwig, M. Herrmann, M.M. Mahmoud, W. Lippmann, and H.J. Seifert, Phase evaluation during high temperature long heat treatments in the Y2O3–Al2O3–SiO2 system, J. Eur. Ceram. Soc., 34(2014), No. 15, p. 3835. doi: 10.1016/j.jeurceramsoc.2014.05.025
      [33]
      S. Ahmad, M. Herrmann, M.M. Mahmoud, H. Leiste, W. Lippmann, and H.J. Seifert, Crystallisation studies of RE2O3–Al2O3–SiO2 glasses under long heat-treatment conditions, J. Alloys Compd., 688(2016), Part B, p. 762.
      [34]
      U. Kolitsch, H.J. Seifert, T. Ludwig, and F. Aldinger, Phase equilibria and crystal chemistry in the Y2O3–Al2O3–SiO2 system, J. Mater. Res., 14(1999), No. 2, p. 447. doi: 10.1557/JMR.1999.0064
      [35]
      R. Harrysson and P. Vomacka, Glass formation in the system Y2O3–Al2O3–SiO2 under conditions of laser melting, J. Eur. Ceram. Soc., 14(1994), No. 4, p. 377. doi: 10.1016/0955-2219(94)90075-2
      [36]
      M. Herrmann, W. Lippmann, and A. Hurtado, Y2O3–Al2O3–SiO2-based glass-ceramic fillers for the laser-supported joining of SiC, J. Eur. Ceram. Soc., 34(2014), No. 8, p. 1935. doi: 10.1016/j.jeurceramsoc.2014.01.019
      [37]
      W. Wisniewski, A. Keshavarzi, T. Zscheckel, and C. Rüssel, EBSD-based phase identification in glass-ceramics of the Y2O3–Al2O3–SiO2 system containing α-and β-Y2Si2O7, J. Alloys Compd., 699(2017), p. 832. doi: 10.1016/j.jallcom.2016.12.301
      [38]
      Q.Y. Han, C.X. Xiang, Y.C. Dong, S.F. Yang, and D. Chen, Equilibria between the rare earth elements, oxygen and sulfur, in molten iron, Metall. Mater. Trans. B, 19(1988), No. 3, p. 409. doi: 10.1007/BF02657738
      [39]
      D.P. Zhan, G.X. Qiu, Z.H. Jiang, and H.S. Zhang, Effect of yttrium and titanium on inclusions and the mechanical properties of 9Cr RAFM steel fabricated by vacuum melting, Steel Res. Int., 88(2017), No. 12, art. No. 1700159.
      [40]
      F. Ishii and S. Banya, Equilibrium between yttrium and oxygen in liquid iron and nickel, ISIJ Int., 35(1995), No. 3, p. 280. doi: 10.2355/isijinternational.35.280
      [41]
      W.G. Seo, W.H. Han, J.S. Kim, and J.J. Pak, Deoxidation equilibria among Mg, Al and O in liquid iron in the presence of MgO·Al2O3 spinel, ISIJ Int., 43(2003), No. 2, p. 201. doi: 10.2355/isijinternational.43.201

    Catalog


    • /

      返回文章
      返回