留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 2
Feb.  2020

图(9)

数据统计

分享

计量
  • 文章访问数:  3476
  • HTML全文浏览量:  783
  • PDF下载量:  219
  • 被引次数: 0
Xu-yu Zhang, Qian-shuai Wang, Zhong-xian Wu,  and Dong-ping Tao, An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 152-161. https://doi.org/10.1007/s12613-019-1936-0
Cite this article as:
Xu-yu Zhang, Qian-shuai Wang, Zhong-xian Wu,  and Dong-ping Tao, An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 152-161. https://doi.org/10.1007/s12613-019-1936-0
引用本文 PDF XML SpringerLink
研究论文

体空化纳米气泡的尺寸分布和zeta电位研究

  • Research Article

    An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles

    + Author Affiliations
    • Nanobubble flotation technology is an important research topic in the field of fine mineral particle separation. The basic characteristics of nanobubbles, including their size, concentration, surface zeta potential, and stability have a significant impact on the nanobubble flotation performance. In this paper, bulk nanobubbles generated based on the principle of hydrodynamic cavitation were investigated to determine the effects of different parameters (e.g., surfactant (frother) dosage, air flow, air pressure, liquid flow rate, and solution pH value) on their size distribution and zeta potential, as measured using a nanoparticle analyzer. The results demonstrated that the nanobubble size decreased with increasing pH value, surfactant concentration, and cavitation-tube liquid flow rate but increased with increasing air pressure and increasing air flow rate. The magnitude of the negative surface charge of the nanobubbles was positively correlated with the pH value, and a certain relationship was observed between the zeta potential of the nanobubbles and their size. The structural parameters of the cavitation tube also strongly affected the characteristics of the nanobubbles. The results of this study offer certain guidance for optimizing the nanobubble flotation technology.

    • loading
    • [1]
      M. Alheshibri, J. Qian, M. Jehannin, and V.S.J. Craig, A history of nanobubbles, Langmuir, 32(2016), No. 43, p. 11086. doi: 10.1021/acs.langmuir.6b02489
      [2]
      S.C. Li, Cavitation of Hydraulic Machinery, Imperial College Press, London, 2000, p. 32.
      [3]
      Y. Xiong and F. Peng, Optimization of cavitation venturi tube design for pico and nano bubbles generation, Int. J. Min. Sci. Technol., 25(2015), No. 4, p. 523. doi: 10.1016/j.ijmst.2015.05.002
      [4]
      M.D Li, A. Bussonnière, M. Bronson, Z.H. Xu, and Q.X. Liu, Study of Venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles, Miner. Eng., 132(2019), p. 268. doi: 10.1016/j.mineng.2018.11.001
      [5]
      W.G. Zhou, H. Chen, L.M. Ou, and Q. Shi, Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation, Int. J. Miner. Process., 157(2016), p. 236. doi: 10.1016/j.minpro.2016.11.003
      [6]
      W.G. Zhou, L.M. Ou, Q. Shi, Q.M. Feng, and H. Chen, Different flotation performance of ultrafine scheelite under two hydrodynamic cavitation modes, Minerals, 8(2018), No. 7, p. 264. doi: 10.3390/min8070264
      [7]
      D.P. Tao and A. Sobhy, Nanobubble effects on hydrodynamic interactions between particles and bubbles, Powder Technol., 346(2019), p. 385. doi: 10.1016/j.powtec.2019.02.024
      [8]
      A. Sobhy and D.P. Tao, Effects of nanobubbles on froth stability in flotation column, Int. J. Coal Prep. Util., 39(2019), No. 4, p. 183. doi: 10.1080/19392699.2018.1459582
      [9]
      N.K. Madavan, S. Deutsch, and C.L. Merkle, Reduction of turbulent skin friction by microbubbles, Phys. Fluids, 27(1984), No. 2, p. 356. doi: 10.1063/1.864620
      [10]
      H.Z. Li, L.M. Hu, D.J. Song, and F. Lin, Characteristics of micro-nano bubbles and potential application in groundwater bioremediation, Water Environ. Res., 86(2014), No. 9, p. 844. doi: 10.2175/106143014X14062131177953
      [11]
      A. Agarwal, W.J. Ng, and Y. Liu, Principle and applications of microbubble and nanobubble technology for water treatment, Chemosphere, 84(2011), No. 9, p. 1175. doi: 10.1016/j.chemosphere.2011.05.054
      [12]
      S. Calgaroto, K.Q. Wilberg, and J. Rubio, On the nanobubbles interfacial properties and future applications in flotation, Miner. Eng., 60(2014), p. 33. doi: 10.1016/j.mineng.2014.02.002
      [13]
      A. Sobhy and D. Tao, Nanobubble column flotation of fine coal particles and associated fundamentals, Int. J. Miner. Process., 124(2013), p. 109. doi: 10.1016/j.minpro.2013.04.016
      [14]
      A.F. Rosa and J. Rubio, On the role of nanobubbles in particle–bubble adhesion for the flotation of quartz and apatitic minerals, Miner. Eng., 127(2018), p. 178. doi: 10.1016/j.mineng.2018.08.020
      [15]
      S. Calgaroto, A. Azevedo, and J. Rubio, Flotation of quartz particles assisted by nanobubbles, Int. J. Miner. Process., 137(2015), p. 64. doi: 10.1016/j.minpro.2015.02.010
      [16]
      K. Ebina, K. Shi, M. Hirao, J. Hashimoto, Y. Kawato, S. Kaneshiro, T. Morimoto, K. Koizumi, and H. Yoshikawa, Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice, PLoS One, 8(2013), No. 6, p. e65339. doi: 10.1371/journal.pone.0065339
      [17]
      S. Cai, H. Shi, X.H. Pan, F.P. Liu, H.W. Xie, Y.Q. Xu, T. Xu, and N. Cao, Effects of micro-nano bubble aerated irrigation on water requirement characters and yield of double season rice, Water Saving Irrig., 2017, No. 2, p. 12.
      [18]
      X.T. Bao, Q.Y. Chen, Z.Q. Xu, D.D. Yue, R. Geng, and Y.L. Ding, Overview of research and application of micro-nano bubbles technology in fishery and aquaculture sector, Water Purif. Technol., 35(2016), No. 4, p. 16.
      [19]
      T.H. Li and H.Q. Lu, The energy dissipation rate per unit mass of jet pump mixture, Mach. Dev., 2000, No. 4, p. 39.
      [20]
      W.B. Cai, H.L. Yang, J. Zhang, J.K. Yin, Y.L. Yang, L.J. Yuan, L. Zhang, and Y.Y. Duan, The optimized fabrication of nanobubbles as ultrasound contrast agents for tumor imaging, Sci. Rep., 5(2015), art. No. 13725.
      [21]
      A.A. Kalmes, S. Ghosh, and R.L. Watson, A saline-based therapeutic containing charge-stabilized nanostructures protects against cardiac ischemia/reperfusion injury, J. Am. Coll. Cardiol., 61(2013), No. 10, p. E106. doi: 10.1016/S0735-1097(13)60107-2
      [22]
      R. Etchepare, H. Oliveira, M. Nicking, A. Azevedo, and J. Rubio, Nanobubbles: generation using a multiphase pump, properties and features in flotation, Miner. Eng., 112(2017), p. 19. doi: 10.1016/j.mineng.2017.06.020
      [23]
      M.M. Fan, D. Tao, R. Honaker, and Z.F. Luo, Nanobubble generation and its applications in froth flotation (part I): nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions, Min. Sci. Technol. Chin., 20(2010), No. 1, p. 1. doi: 10.1016/S1674-5264(09)60154-X
      [24]
      A.S. Najafi, J. Drelich, A. Yeung, Z.H. Xu, and J. Masliyah, A novel method of measuring electrophoretic mobility of gas bubbles, J. Colloid Interface Sci., 308(2007), No. 2, p. 344. doi: 10.1016/j.jcis.2007.01.014
      [25]
      P.N. Rowe and R. Matsuno, Single bubbles injected into a gas fluidised bed and observed by X-rays, Chem. Eng. Sci., 26(1971), No. 6, p. 923. doi: 10.1016/0009-2509(71)83052-X
      [26]
      Y.R. Tian, J.A. Ketterling, and R.E. Apfel, Direct observation of microbubble oscillations, J. Acoust. Soc. Am., 100(1996), No. 6, p. 3976. doi: 10.1121/1.417339
      [27]
      J.S. Sung and J.M. Burgess, A laser-based method for bubble parameter measurement in two-dimensional fluidised beds, Powder Technol., 49(1987), No. 2, p. 165. doi: 10.1016/0032-5910(87)80058-X
      [28]
      H. Tsuge, Y. Tanaka, and S.I. Hibino, Effect of the physical properties of gas on the volume of bubble formed from a submerged single orifice, Can. J. Chem. Eng., 59(1981), No. 5, p. 569. doi: 10.1002/cjce.5450590502
      [29]
      R.T. Rodrigues and J. Rubio, New basis for measuring the size distribution of bubbles, Miner. Eng., 16(2003), No. 8, p. 757. doi: 10.1016/S0892-6875(03)00181-X
      [30]
      G.R. Caicedo, J.J.P. Marqués, M.G. Ruíz, and J.G. Soler, A study on the behaviour of bubbles of a 2D gas–solid fluidized bed using digital image analysis, Chem. Eng. Process., 42(2003), No. 1, p. 9. doi: 10.1016/S0255-2701(02)00039-9
      [31]
      Z.A. Zhou, N.O. Egiebor, and L.R. Plitt, Frother effects on bubble size estimation in a flotation column, Miner. Eng., 6(1993), No. 1, p. 55. doi: 10.1016/0892-6875(93)90163-H
      [32]
      M.Y. Han, Y.H. Park, and T.J. Yu, Development of a new method of measuring bubble size, Water Sci. Technol. Water Supply, 2(2002), No. 2, p. 77. doi: 10.2166/ws.2002.0048
      [33]
      F.R. Young, Cavitation, McGraw-Hill Book Company, Maidenhead, 1989, p. 322
      [34]
      R. Clift, J.R. Grace, and M.E. Weber, Bubbles, Drops and Particles, Academic Press, New York, 1978, p. 380.
      [35]
      J.K. Edzwald, Principles and applications of dissolved air flotation, Water. Sci. Technol., 31(1995), No. 3-4, p. 1. doi: 10.2166/wst.1995.0512
      [36]
      J.A. Finch, J.E. Nesset, and C. Acuña, Role of frother on bubble production and behaviour in flotation, Miner. Eng., 21(2008), No. 12-14, p. 949. doi: 10.1016/j.mineng.2008.04.006
      [37]
      F. Azgomi, Characterizing frothers by their bubble size control properties [Dissertation], McGill University, Montreal, 2007, p. 14.
      [38]
      A.K. Gupta, P.K. Banerjee, A. Mishra, P. Satish, and Pradip, Effect of alcohol and polyglycol ether frothers on foam stability, bubble size and coal flotation, Int. J. Miner. Process., 82(2007), No. 3, p. 126. doi: 10.1016/j.minpro.2006.09.002
      [39]
      P. Moyo, C.O. Gomez, and J.A. Finch, Characterizing frothers using water carrying rate, Can. Metall. Q., 46(2007), No. 3, p. 215. doi: 10.1179/cmq.2007.46.3.215
      [40]
      K.A. Karraker and C.J. Radke, Disjoining pressures, zeta potentials and surface tensions of aqueous non-ionic surfactant/electrolyte solutions: theory and comparison to experiment, Adv. Colloid Interface Sci., 96(2002), No. 1-3, p. 231. doi: 10.1016/S0001-8686(01)00083-5
      [41]
      A.M. Elmahdy, M. Mirnezami, and J.A. Finch, Zeta potential of air bubbles in presence of frothers, Int. J. Miner. Process., 89(2008), No. 1-4, p. 40. doi: 10.1016/j.minpro.2008.09.003
      [42]
      C.D. Wu, K. Nesset, J. Masliyah, and Z.H. Xu, Generation and characterization of submicron size bubbles, Adv. Colloid Interface Sci., 179-182(2012), p. 123. doi: 10.1016/j.cis.2012.06.012
      [43]
      R.H. Yoon and J.L. Yordan, Zeta-potential measurements on microbubbles generated using various surfactants, J. Colloid Interface Sci., 113(1986), No. 2, p. 430. doi: 10.1016/0021-9797(86)90178-5
      [44]
      W. Xiao, Y.L. Zhao, J. Yang, Y.X. Ren, W. Yang, X.T. Huang, and L.J. Zhang, Effect of sodium oleate on the adsorption morphology and mechanism of nanobubbles on the mica surface, Langmuir, 35(2019), No. 28, p. 9239. doi: 10.1021/acs.langmuir.9b01384
      [45]
      A. Fujiwara, K. Okamoto, K. Hashiguchi, J. Peixinho, S. Takagi, and Y. Matsumoto, Bubble breakup phenomena in a venturi tube, [in] ASME/JSME 2007 5th Joint ASME/JSME Fluids Engineering Conference, California, 2007, p. 1.
      [46]
      H.Z. Yang, Experimental Study on Enhancive Effect of Hydrodynamic Cavitation [Dissertation], Dalian University of Technology, Dalian, 2006, p. 36.
      [47]
      E. Sada, A. Yasunishi, S. Katoh, and M. Nishioka, Bubble formation in flowing liquid, Can. J. Chem. Eng., 56(1978), No. 6, p. 669. doi: 10.1002/cjce.5450560603
      [48]
      L. Davidson and E.H. Amick, Formation of gas bubbles at horizontal orifices, AIChE J., 2(1956), No. 3, p. 337. doi: 10.1002/aic.690020309

    Catalog


    • /

      返回文章
      返回