Cite this article as: |
Ru-yi Feng, Wen-xian Wang, Zhi-feng Yan, Deng-hui Wang, Shi-peng Wan, and Ning Shi, Fatigue limit assessment of a 6061 aluminum alloy based on infrared thermography and steady ratcheting effect, Int. J. Miner. Metall. Mater., 27(2020), No. 9, pp. 1301-1308. https://doi.org/10.1007/s12613-019-1942-2 |
To quickly predict the fatigue limit of 6061 aluminum alloy, two assessment methods based on the temperature evolution and the steady ratcheting strain difference under cyclic loading, respectively, were proposed. The temperature evolutions during static and cyclic loadings were both measured by infrared thermography. Fatigue tests show that the temperature evolution was closely related to the cyclic loading, and the cyclic loading range can be divided into three sections according to the regular of temperature evolution in different section. The mechanism of temperature evolution under different cyclic loadings was also analyzed due to the thermoelastic, viscous, and thermoplastic effects. Additionally, ratcheting strain under cyclic loading was also measured, and the results show that the evolution of the ratcheting strain under cyclic loading above the fatigue limit undergone three stages: the first increasing stage, the second steady state, and the final abrupt increase stage. The fatigue limit of the 6061 aluminum alloy was quickly estimated based on transition point of linear fitting of temperature increase and the steady value of ratcheting strain difference. Besides, it is feasible and quick of the two methods by the proof of the traditional S–N curve.
[1] |
Y.Q. Chen, S.P. Pan, M.Z. Zhou, D.Q. Yi, D.Z. Xu, and Y.F. Xu, Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy, Mater. Sci. Eng. A, 580(2013), p. 150. doi: 10.1016/j.msea.2013.05.053
|
[2] |
J.C. Williams and E.A. Starke, Progress in structural materials for aerospace systems, Acta. Mater., 51(2003), No. 19, p. 5775. doi: 10.1016/j.actamat.2003.08.023
|
[3] |
T.M. Roberts and M. Talebzadeh, Fatigue life prediction based on crack propagation and acoustic emission count rates, J. Constr. Steel Res., 59(2003), No. 6, p. 679. doi: 10.1016/S0143-974X(02)00065-2
|
[4] |
L. Zhang, X.S. Liu, S.H. Wu, Z.Q. Ma, and H.Y. Fang, Rapid determination of fatigue life based on temperature evolution, Int. J. Fatigue, 54(2013), p. 1. doi: 10.1016/j.ijfatigue.2013.04.002
|
[5] |
S. Bagavathiappan, B.B. Lahiri, T. Saravanan, J. Philip, and T. Jayakumar, Infrared thermography for condition monitoring—A review, Infrared Phys. Technol., 60(2013), p. 35. doi: 10.1016/j.infrared.2013.03.006
|
[6] |
J.L. Fan, X.L. Guo, and C.W. Wu, A new application of the infrared thermography for fatigue evaluation and damage assessment, Int. J. Fatigue, 44(2012), p. 1. doi: 10.1016/j.ijfatigue.2012.06.003
|
[7] |
Z.Q. Cui, H.W. Yang, W.X. Wang, Z.F. Yan, Z.Z. Ma, B.S. Xu, and H.Y. Xu, Research on fatigue crack growth behavior of AZ31B magnesium alloy electron beam welded joints based on temperature distribution around the crack tip, Eng. Fract. Mech., 133(2015), p. 14. doi: https://doi.org/10.1016/j.engfracmech.2014.11.004
|
[8] |
Z.Q. Xu, H.X. Zhang, Z.F. Yan, F. Liu, P.K. Liaw, and W.X. Wang, Three-point-bending fatigue behavior of AZ31B magnesium alloy based on infrared thermography technology, Int. J. Fatigue, 95(2017), p. 156. doi: 10.1016/j.ijfatigue.2016.10.013
|
[9] |
Z.F. Yan, H.X. Zhang, P.D. Chen, and W.X. Wang, Anisotropy of fatigue behavior and tensile behavior of 5A06 aluminum alloy based on infrared thermography, J. Wuhan Univ. Technol.-Mater. Sci. Ed., 32(2017), No. 1, p. 155. doi: 10.1007/s11595-017-1574-1
|
[10] |
C.F.C. Bandeira, P.P. Kenedi, L.F.G. Souza, and S. de Barros, On the use of thermographic technique to assess the fatigue performance of bonded joints, Int. J. Adhes. Adhes., 83(2018), p. 137. doi: 10.1016/j.ijadhadh.2018.02.016
|
[11] |
W.P. Yang, X.L. Guo, Q. Guo, and J.L. Fan, Rapid evaluation for high-cycle fatigue reliability of metallic materials through quantitative thermography methodology, Int. J. Fatigue, 124(2019), p. 461. doi: 10.1016/j.ijfatigue.2019.03.024
|
[12] |
K. Dutta and K.K. Ray, Ratcheting phenomenon and post-ratcheting tensile behavior of an aluminum alloy, Mater. Sci. Eng. A, 540(2012), p. 30. doi: 10.1016/j.msea.2012.01.024
|
[13] |
R. Kreethi, P. Verma, and K. Dutta, Influence of heat treatment on ratcheting fatigue behavior and post ratcheting tensile properties of commercial aluminum, Trans. Indian Inst. Met., 68(2015), No. 2, p. 229. doi: 10.1007/s12666-014-0449-9
|
[14] |
S. Sreenivasan, S.K. Mishra, and K. Dutta, Ratcheting strain and its effect on low cycle fatigue behavior of Al 7075-T6 alloy, Mater. Sci. Eng. A, 698(2017), p. 46. doi: 10.1016/j.msea.2017.05.048
|
[15] |
S.K. Mishra, H. Roy, and K. Dutta, Influence of ratcheting strain on tensile properties of A356 alloy, Mater. Today:Proc., 5(2018), No. 5, p. 12403. doi: 10.1016/j.matpr.2018.02.219
|
[16] |
Y.C. Lin, Z.H. Liu, X.M. Chen, and Z.L. Long, Cyclic plasticity constitutive model for uniaxial ratcheting behavior of AZ31B magnesium alloy, J. Mater. Eng. Perform., 24(2015), No. 5, p. 1820. doi: 10.1007/s11665-015-1487-0
|
[17] |
Y.C. Lin, X.M. Chen, Z.H. Liu, and J. Chen, Investigation of uniaxial low-cycle fatigue failure behavior of hot-rolled AZ91 magnesium alloy, Int. J. Fatigue, 48(2013), p. 122. doi: 10.1016/j.ijfatigue.2012.10.010
|
[18] |
B. Yang, P.K. Liaw, M. Morrison, C.T. Liu, R.A. Buchanan, J.Y. Huang, R.C. Kuo, J.G. Huang, and D.E. Fielden, Tempreature evolution during fatigue damage, Intermetallics, 13(2005), No. 3-4, p. 419. doi: 10.1016/j.intermet.2004.07.032
|
[19] |
B. Yang, P.K. Liaw, J.Y. Huang, R.C. Kuo, J.G. Huang, and D.E. Fielden, Stress analyses and geometry effects during cyclic loading using thermography, J. Eng. Mater. Technol., 127(2005), No. 1, p. 75. doi: 10.1115/1.1836793
|
[20] |
H.T. Lee and G.H. Shaue, The thermomechanical behavior for aluminum alloy under uniaxial tensile loading, Mater. Sci. Eng. A, 268(1999), No. 1-2, p. 154. doi: 10.1016/S0921-5093(99)00069-6
|
[21] |
B. Yang, G. Wang, W.H. Peter, P.K. Liaw, R.A. Buchanan, D.E. Fielden, Y. Yokoyama, J.Y. Huang, R.C. Kuo, J.G. Huang, and D.L. Klarstrom, Thermal-imaging technologies for detecting damage during high-cycle fatigue, Metal. Mater. Trans. A, 35(2004), No. 1, p. 15. doi: 10.1007/s11661-004-0104-x
|
[22] |
Y.T. Zhang, Theory of Thermo-Viscoelasticity, Tianjin University Press, Tianjin, 2002.
|
[23] |
K.S. Anish and P.V. Pillai, Stress pattern analysis using thermal camera, Int. J. Adv. Prod. Mech. Eng., 2(2016), No. 5, p. 5.
|
[24] |
Y.C. Lin, Z.H. Liu, X.M. Chen, and J. Chen, Uniaxial ratcheting and fatigue failure behaviors of hot-rolled AZ31B magnesium alloy under asymmetrical cyclic stress controlled loadings, Mater. Sci. Eng. A, 573(2013), p. 234. doi: 10.1016/j.msea.2013.03.004
|
[25] |
Z.F. Yan, D.H. Wang, X.L. He, W.X. Wang, H.X. Zhang, P. Dong, C.H. Li, Y.L. Li, J. Zhou, Z. Liu, and L.Y. Sun, Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect, Mater. Sci. Eng. A, 723(2018), p. 212. doi: 10.1016/j.msea.2018.03.023
|