Cite this article as: |
Hai-yan Yu, Xiao-lin Pan, Yong-pan Tian, and Gan-feng Tu, Mineral transition and formation mechanism of calcium aluminate compounds in CaO−Al2O3−Na2O system during high-temperature sintering, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 924-932. https://doi.org/10.1007/s12613-019-1951-1 |
[1] |
N.K. Lee, K.T. Koh, S.H. Park, and G.S. Ryu, Microstructural investigation of calcium aluminate cement-based ultra-high performance concrete (UHPC) exposed to high temperatures, Cem. Concr. Res., 102(2017), p. 109. doi: 10.1016/j.cemconres.2017.09.004
|
[2] |
Y.Y. Zhang, W. Lü, Y.H. Qi, and Z.S. Zou, Recovery of iron and calcium aluminate slag from high-ferrous bauxite by high-temperature reduction and smelting process, Int. J. Miner. Metall. Mater., 23(2016), No. 8, p. 881. doi: 10.1007/s12613-016-1303-3
|
[3] |
R.M. Parreira, T.L. Andrade, A.P. Luz, V.C. Pandolfelli, and I.R. Oliveira, Calcium aluminate cement-based compositions for biomaterial applications, Ceram. Int., 42(2016), No. 10, p. 11732. doi: 10.1016/j.ceramint.2016.04.092
|
[4] |
J.H. Chen, H.Y. Chen, M.W. Yan, Z. Cao, and W.J. Mi, Formation mechanism of calcium hexaluminate, Int. J. Miner. Metall. Mater., 23(2016), No. 10, p. 1225. doi: 10.1007/s12613-016-1342-9
|
[5] |
B. Hallstedl, Assessment of the CaO−Al2O3 system, J. Am. Ceram. Soc., 73(1990), No. 1, p. 15. doi: 10.1111/j.1151-2916.1990.tb05083.x
|
[6] |
X.L. Pan, D. Zhang, Y. Wu, and H.Y. Yu, Synthesis and characterization of calcium aluminate compounds from gehlenite by high-temperature solid-state reaction, Ceram. Int., 44(2018), No. 12, p. 13544. doi: 10.1016/j.ceramint.2018.04.186
|
[7] |
H. Verweij and C.M.P.M. Saris, Phase formation in the system Na2O·Al2O3−CaO·A12O3−Al2O3 at 1200 °C in air, J. Am. Ceram. Soc., 69(1986), No. 2, p. 94. doi: 10.1111/j.1151-2916.1986.tb04708.x
|
[8] |
D. Zhang, W. Zhang, H.L. Sun, and B. Wang, Mineral transition mechanism of calcium aluminate with sodium doping during high-temperature sintering reaction, J. Alloys Compd., 771(2019), p. 195. doi: 10.1016/j.jallcom.2018.08.260
|
[9] |
J. Yang, Q. Wang, J.Q. Zhang, O. Ostrovski, C. Zhang, and D.X. Cai, Effect of Al2O3/(B2O3 + Na2O) ratio on CaO−Al2O3-based mold fluxes: Melting property, viscosity, heat transfer, and structure, Metall. Mater. Trans. B, 50(2019), No. 6, p. 2794. doi: 10.1007/s11663-019-01711-z
|
[10] |
J. Shen, L. Gong, and Q.X. Li, Structure and antibacterial property of Na2O doped C12A7, Chin. J. Inorg. Chem., 27(2011), No. 2, p. 353.
|
[11] |
C. Ostrowski and J. Żelazny, Solid solutions of calcium aluminates C3A, C12A7 and CA with sodium oxide, J. Therm. Anal. Calorim., 75(2004), No. 3, p. 867. doi: 10.1023/B:JTAN.0000027182.40442.fe
|
[12] |
H.Y. Yu, X.L. Pan, B. Wang, W. Zhang, H.L. Sun, and S.W. Bi, Effect of Na2O on the formation of calcium aluminates in CaO−Al2O3−SiO2 system, Trans. Nonferrous Met. Soc. China, 22(2012), No. 12, p. 3108. doi: 10.1016/S1003-6326(11)61578-1
|
[13] |
D. Zhang, X.L. Pan, H.Y. Yu, and Y.C. Zhai, Mineral transition of calcium aluminate clinker during high-temperature sintering with low-lime dosage, J. Mater. Sci. Technol., 31(2015), No. 12, p. 1244. doi: 10.1016/j.jmst.2015.10.012
|
[14] |
Y.P. Tian, X.L. Pan, H.Y. Yu, and G.F. Tu, Formation mechanism of calcium aluminate compounds based on high-temperature solid-state reaction, J. Alloys Compd., 670(2016), p. 96. doi: 10.1016/j.jallcom.2016.02.059
|
[15] |
P. McMillan and B. Piriou, Raman spectroscopy of calcium aluminate glasses and crystals, J. Non-Cryst. Solids, 55(1983), No. 2, p. 221. doi: 10.1016/0022-3093(83)90672-5
|
[16] |
K. Kajihara, S. Matsuishi, K. Hayashi, M. Hirano, and H. Hosono, Vibrational dynamics and oxygen diffusion in a nanoporous oxide ion conductor 12CaO·7Al2O3 studied by 18O labeling and micro-Raman spectroscopy, J. Phys. Chem. C, 111(2007), No. 40, p. 14855. doi: 10.1021/jp074248n
|
[17] |
P. McMillan, B. Piriou, and A. Navrotsky, A Raman-spectroscopic study of glasses along the joins silica−calcium aluminate, silica−sodium aluminate, and silica−potassium aluminate, Geochim. Cosmochim. Acta, 46(1982), No. 11, p. 2021. doi: 10.1016/0016-7037(82)90182-X
|
[18] |
A. Meiszterics, L. Rosta, H. Peterlik, J. Rohonczy, S. Kubuki, P. Henits, and K. Sinkó, Structural characterization of gel-derived calcium silicate systems, J. Phys. Chem. A, 114(2010), No. 38, p. 10403. doi: 10.1021/jp1053502
|
[19] |
L. Zhang, R. Lan, C.T.G. Petit, and S.W. Tao, Durability study of an intermediate temperature fuel cell based on an oxide−carbonate composite electrolyte, Int. J. Hydrogen Energy, 35(2010), No. 13, p. 6934. doi: 10.1016/j.ijhydene.2010.04.026
|
[20] |
M.A. Legodi, D. de Waal, J.H. Potgieter, and S.S. Potgieter, Rapid determination of CaCO3 in mixtures utilising FT-IR spectroscopy, Miner. Eng., 14(2001), No. 9, p. 1107. doi: 10.1016/S0892-6875(01)00116-9
|
[21] |
S. Vyazovkin and C.A. Wight, Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids, Int. Rev. Phys. Chem., 17(1998), No. 3, p. 407. doi: 10.1080/014423598230108
|
[22] |
Š. Zuzjaková, P. Zeman, and Š. Kos, Non-isothermal kinetics of phase transformations in magnetron sputtered alumina films with metastable structure, Thermochim. Acta, 572(2013), p. 85. doi: 10.1016/j.tca.2013.09.019
|
[23] |
M.J. Cran, S.R. Gray, J. Scheirs, and S.W. Bigger, Non-isothermal depolymerisation kinetics of poly(ethylene oxide), Polym. Degrad. Stab., 96(2011), No. 8, p. 1497. doi: 10.1016/j.polymdegradstab.2011.05.004
|
[24] |
B.A. Sava, M. Elisa, C. Bartha, R. Iordanescu, I. Feraru, C. Plapcianu, and R. Patrascu, Non-isothermal free-models kinetic analysis on crystallization of europium-doped phosphate glasses, Ceram. Int., 40(2014), No. 8, p. 12387. doi: 10.1016/j.ceramint.2014.04.089
|