留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 7
Jul.  2020

图(14)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1538
  • HTML全文浏览量:  303
  • PDF下载量:  33
  • 被引次数: 0
Hai-yan Yu, Xiao-lin Pan, Yong-pan Tian, and Gan-feng Tu, Mineral transition and formation mechanism of calcium aluminate compounds in CaO−Al2O3−Na2O system during high-temperature sintering, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 924-932. https://doi.org/10.1007/s12613-019-1951-1
Cite this article as:
Hai-yan Yu, Xiao-lin Pan, Yong-pan Tian, and Gan-feng Tu, Mineral transition and formation mechanism of calcium aluminate compounds in CaO−Al2O3−Na2O system during high-temperature sintering, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 924-932. https://doi.org/10.1007/s12613-019-1951-1
引用本文 PDF XML SpringerLink
  • Research Article

    Mineral transition and formation mechanism of calcium aluminate compounds in CaO−Al2O3−Na2O system during high-temperature sintering

    + Author Affiliations
    • The mineral transition and formation mechanism of calcium aluminate compounds in CaO−Al2O3−Na2O system during the high-temperature sintering process were systematically investigated using DSC−TG, XRD, SEM−EDS, FTIR, and Raman spectra, and the crystal structure of Na4Ca3(AlO2)10 was also simulated by Material Studio software. The results indicated that the minerals formed during the sintering process included Na4Ca3(AlO2)10, CaO·Al2O3, and 12CaO·7Al2O3, and the content of Na4Ca3(AlO2)10 could reach 92wt% when sintered at 1200°C for 30 min. The main formation stage of Na4Ca3(AlO2)10 occurred at temperatures from 970 to 1100°C, and the content could reach 82wt% when the reaction temperature increased to 1100°C. The crystal system of Na4Ca3(AlO2)10 was tetragonal, and the cells preferred to grow along crystal planes (110) and (210). The formation of Na4Ca3(AlO2)10 was an exothermic reaction that followed a secondary reaction model, and its activation energy was 223.97 kJ/mol.
    • loading
    • [1]
      N.K. Lee, K.T. Koh, S.H. Park, and G.S. Ryu, Microstructural investigation of calcium aluminate cement-based ultra-high performance concrete (UHPC) exposed to high temperatures, Cem. Concr. Res., 102(2017), p. 109. doi: 10.1016/j.cemconres.2017.09.004
      [2]
      Y.Y. Zhang, W. Lü, Y.H. Qi, and Z.S. Zou, Recovery of iron and calcium aluminate slag from high-ferrous bauxite by high-temperature reduction and smelting process, Int. J. Miner. Metall. Mater., 23(2016), No. 8, p. 881. doi: 10.1007/s12613-016-1303-3
      [3]
      R.M. Parreira, T.L. Andrade, A.P. Luz, V.C. Pandolfelli, and I.R. Oliveira, Calcium aluminate cement-based compositions for biomaterial applications, Ceram. Int., 42(2016), No. 10, p. 11732. doi: 10.1016/j.ceramint.2016.04.092
      [4]
      J.H. Chen, H.Y. Chen, M.W. Yan, Z. Cao, and W.J. Mi, Formation mechanism of calcium hexaluminate, Int. J. Miner. Metall. Mater., 23(2016), No. 10, p. 1225. doi: 10.1007/s12613-016-1342-9
      [5]
      B. Hallstedl, Assessment of the CaO−Al2O3 system, J. Am. Ceram. Soc., 73(1990), No. 1, p. 15. doi: 10.1111/j.1151-2916.1990.tb05083.x
      [6]
      X.L. Pan, D. Zhang, Y. Wu, and H.Y. Yu, Synthesis and characterization of calcium aluminate compounds from gehlenite by high-temperature solid-state reaction, Ceram. Int., 44(2018), No. 12, p. 13544. doi: 10.1016/j.ceramint.2018.04.186
      [7]
      H. Verweij and C.M.P.M. Saris, Phase formation in the system Na2O·Al2O3−CaO·A12O3−Al2O3 at 1200 °C in air, J. Am. Ceram. Soc., 69(1986), No. 2, p. 94. doi: 10.1111/j.1151-2916.1986.tb04708.x
      [8]
      D. Zhang, W. Zhang, H.L. Sun, and B. Wang, Mineral transition mechanism of calcium aluminate with sodium doping during high-temperature sintering reaction, J. Alloys Compd., 771(2019), p. 195. doi: 10.1016/j.jallcom.2018.08.260
      [9]
      J. Yang, Q. Wang, J.Q. Zhang, O. Ostrovski, C. Zhang, and D.X. Cai, Effect of Al2O3/(B2O3 + Na2O) ratio on CaO−Al2O3-based mold fluxes: Melting property, viscosity, heat transfer, and structure, Metall. Mater. Trans. B, 50(2019), No. 6, p. 2794. doi: 10.1007/s11663-019-01711-z
      [10]
      J. Shen, L. Gong, and Q.X. Li, Structure and antibacterial property of Na2O doped C12A7, Chin. J. Inorg. Chem., 27(2011), No. 2, p. 353.
      [11]
      C. Ostrowski and J. Żelazny, Solid solutions of calcium aluminates C3A, C12A7 and CA with sodium oxide, J. Therm. Anal. Calorim., 75(2004), No. 3, p. 867. doi: 10.1023/B:JTAN.0000027182.40442.fe
      [12]
      H.Y. Yu, X.L. Pan, B. Wang, W. Zhang, H.L. Sun, and S.W. Bi, Effect of Na2O on the formation of calcium aluminates in CaO−Al2O3−SiO2 system, Trans. Nonferrous Met. Soc. China, 22(2012), No. 12, p. 3108. doi: 10.1016/S1003-6326(11)61578-1
      [13]
      D. Zhang, X.L. Pan, H.Y. Yu, and Y.C. Zhai, Mineral transition of calcium aluminate clinker during high-temperature sintering with low-lime dosage, J. Mater. Sci. Technol., 31(2015), No. 12, p. 1244. doi: 10.1016/j.jmst.2015.10.012
      [14]
      Y.P. Tian, X.L. Pan, H.Y. Yu, and G.F. Tu, Formation mechanism of calcium aluminate compounds based on high-temperature solid-state reaction, J. Alloys Compd., 670(2016), p. 96. doi: 10.1016/j.jallcom.2016.02.059
      [15]
      P. McMillan and B. Piriou, Raman spectroscopy of calcium aluminate glasses and crystals, J. Non-Cryst. Solids, 55(1983), No. 2, p. 221. doi: 10.1016/0022-3093(83)90672-5
      [16]
      K. Kajihara, S. Matsuishi, K. Hayashi, M. Hirano, and H. Hosono, Vibrational dynamics and oxygen diffusion in a nanoporous oxide ion conductor 12CaO·7Al2O3 studied by 18O labeling and micro-Raman spectroscopy, J. Phys. Chem. C, 111(2007), No. 40, p. 14855. doi: 10.1021/jp074248n
      [17]
      P. McMillan, B. Piriou, and A. Navrotsky, A Raman-spectroscopic study of glasses along the joins silica−calcium aluminate, silica−sodium aluminate, and silica−potassium aluminate, Geochim. Cosmochim. Acta, 46(1982), No. 11, p. 2021. doi: 10.1016/0016-7037(82)90182-X
      [18]
      A. Meiszterics, L. Rosta, H. Peterlik, J. Rohonczy, S. Kubuki, P. Henits, and K. Sinkó, Structural characterization of gel-derived calcium silicate systems, J. Phys. Chem. A, 114(2010), No. 38, p. 10403. doi: 10.1021/jp1053502
      [19]
      L. Zhang, R. Lan, C.T.G. Petit, and S.W. Tao, Durability study of an intermediate temperature fuel cell based on an oxide−carbonate composite electrolyte, Int. J. Hydrogen Energy, 35(2010), No. 13, p. 6934. doi: 10.1016/j.ijhydene.2010.04.026
      [20]
      M.A. Legodi, D. de Waal, J.H. Potgieter, and S.S. Potgieter, Rapid determination of CaCO3 in mixtures utilising FT-IR spectroscopy, Miner. Eng., 14(2001), No. 9, p. 1107. doi: 10.1016/S0892-6875(01)00116-9
      [21]
      S. Vyazovkin and C.A. Wight, Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids, Int. Rev. Phys. Chem., 17(1998), No. 3, p. 407. doi: 10.1080/014423598230108
      [22]
      Š. Zuzjaková, P. Zeman, and Š. Kos, Non-isothermal kinetics of phase transformations in magnetron sputtered alumina films with metastable structure, Thermochim. Acta, 572(2013), p. 85. doi: 10.1016/j.tca.2013.09.019
      [23]
      M.J. Cran, S.R. Gray, J. Scheirs, and S.W. Bigger, Non-isothermal depolymerisation kinetics of poly(ethylene oxide), Polym. Degrad. Stab., 96(2011), No. 8, p. 1497. doi: 10.1016/j.polymdegradstab.2011.05.004
      [24]
      B.A. Sava, M. Elisa, C. Bartha, R. Iordanescu, I. Feraru, C. Plapcianu, and R. Patrascu, Non-isothermal free-models kinetic analysis on crystallization of europium-doped phosphate glasses, Ceram. Int., 40(2014), No. 8, p. 12387. doi: 10.1016/j.ceramint.2014.04.089

    Catalog


    • /

      返回文章
      返回