留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 4
Apr.  2020

图(10)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  1660
  • HTML全文浏览量:  579
  • PDF下载量:  73
  • 被引次数: 0
Feng Li, Qing-jie Zhao, Man-sheng Chu, Jue Tang, Zheng-gen Liu, Jia-xin Wang, and Sheng-kang Li, Preparing high-purity iron by direct reduction‒smelting separation of ultra-high-grade iron concentrate, Int. J. Miner. Metall. Mater., 27(2020), No. 4, pp. 454-462. https://doi.org/10.1007/s12613-019-1959-6
Cite this article as:
Feng Li, Qing-jie Zhao, Man-sheng Chu, Jue Tang, Zheng-gen Liu, Jia-xin Wang, and Sheng-kang Li, Preparing high-purity iron by direct reduction‒smelting separation of ultra-high-grade iron concentrate, Int. J. Miner. Metall. Mater., 27(2020), No. 4, pp. 454-462. https://doi.org/10.1007/s12613-019-1959-6
引用本文 PDF XML SpringerLink
研究论文

采用直接还原–熔炼分离法制备高纯铁

  • Research Article

    Preparing high-purity iron by direct reduction‒smelting separation of ultra-high-grade iron concentrate

    + Author Affiliations
    • A new process for preparing high-purity iron (HPI) was proposed, and it was investigated by laboratory experiments and pilot tests. The results show that under conditions of a reduced temperature of 1075°C, reduced time of 5 h, and CaO content of 2.5wt%, a DRI with a metallization rate of 96.5% was obtained through coal-based direct reduction of ultra-high-grade iron concentrate. Then, an HPI with a Fe purity of 99.95% and C, Si, Mn, and P contents as low as 0.0008wt%, 0.0006wt%, 0.0014wt%, and 0.0015wt%, respectively, was prepared by smelting separation of the DRI using a smelting temperature of 1625°C, smelting time of 45 min, and CaO content of 9.3wt%. The product of the pilot test with a scale of 0.01 Mt/a had a lower impurity content than the Chinese industry standard. An HPI with a Fe purity of 99.98wt% can be produced through the direct reduction‒smelting separation of ultra-high-grade iron concentrate at relatively low cost. The proposed process shows a promising prospect for application in the future.

    • loading
    • [1]
      H.J. Wang, Z. Rong, L. Xiang, S.T. Qiu, J.X. Li and T.L. Dong, Effect of decarburization annealing temperature and time on the carbon content, microstructure, and texture of grain-oriented pure iron, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 393. doi: 10.1007/s12613-017-1419-0
      [2]
      R.K. Biswas and D.A. Begum, Study of kinetics of forward extraction of Fe(III) from chloride medium by di-2-ethylhexyl phosphoric acid in kerosene using the single drop technique, Hydrometallurgy, 54(1999), No. 1, p. 1. doi: 10.1016/S0304-386X(99)00043-2
      [3]
      K. Abiko, Why do we study ultra-high purity base metals, Mater. Trans.,JIM, 41(2000), No. 1, p. 233. doi: 10.2320/matertrans1989.41.233
      [4]
      A. Prokhodtseva, B. Décamps, and R. Schäublin, Comparison between bulk and thin foil ion irradiation of ultra high purity Fe, J. Nucl. Mater., 442(2013), No. 1-3, p. S786. doi: 10.1016/j.jnucmat.2013.04.032
      [5]
      H. Matsumiya, M. Kuromiya, and M. Hiraide, Matrix-precipitation for the determination of trace impurities in high-purity iron, ISIJ Int., 53(2013), No. 1, p. 81. doi: 10.2355/isijinternational.53.81
      [6]
      T. Kekesi, K. Mimura, and M. Isshiki, Ultra-high purification of iron by anion-exchange in hydrochloric acid solutions, Hydrometallurgy, 63(2002), No. 1, p. 1. doi: 10.1016/S0304-386X(01)00208-0
      [7]
      K. Murakami, N. Nishida, K. Osamura, Y. Tomota, and T. Suzuki, Plasma nitridation of aluminized high purity iron, Acta Mater., 53(2005), No. 9, p. 2563. doi: 10.1016/j.actamat.2005.02.014
      [8]
      M. Uchikoshi, J. Imaizumi, H. Shibuya, T. Kékesi, K. Mimura, and M. Isshiki, Production of semiconductor grade high-purity iron, Thin Solid Films, 461(2004), No. 1, p. 94. doi: 10.1016/j.tsf.2004.02.076
      [9]
      T. Saitoh, K. Sakurai, and M. Hiraide, Thermoresponsive polymer-mediated extraction for graphite furnace atomic absorption spectrometric determination of trace metals in high purity iron, Microchem. J., 139(2018), p. 410. doi: 10.1016/j.microc.2018.03.029
      [10]
      M. Uchikoshi, H. Shibuya, T. Kekesi, K. Mimura, and M. Isshiki, Mass production of high-purity iron using anion-exchange separation and plasma arc melting, Metall. Mater. Trans. B, 40(2009), No. 5, p. 615. doi: 10.1007/s11663-009-9269-4
      [11]
      S. Takaki and K. Abiko, Ultra-purification of electrolytic iron by cold-crucible induction melting and induction-heating floating-zone melting in ultra-high vacuum, Mater. Trans.,JIM, 41(2000), No. 1, p. 2. doi: 10.2320/matertrans1989.41.2
      [12]
      F. Faudot, J.C. Rouchaud, L. Debove, M. Fedoroff, and J. Bigot, Elaboration of high purity iron (RRR>4000) by horizontal zone melting-attempts for chemical characterization, J. Phys. Chem. Solids, 48(1987), No. 8, p. 761. doi: 10.1016/0022-3697(87)90073-4
      [13]
      K. Tudu, S. Pal, and N.R. Mandre, Comparison of selective flocculation of low grade goethitic iron ore fines using natural and synthetic polymers and a graft copolymer, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 498. doi: 10.1007/s12613-018-1596-5
      [14]
      S.O. Bada, A.S. Afolabi, and M.J. Makhula, Effect of reverse flotation on magnetic separation concentrates, Int. J. Miner. Metall. Mater., 19(2012), No. 8, p. 669. doi: 10.1007/s12613-012-0611-5
      [15]
      Q.X. Ye, H.B. Zhu, L.B. Zhang, J. Ma, L. Zhou, P. Liu, J. Chen, G. Chen, and J.H. Peng, Preparation of reduced iron powder using combined distribution of wood-charcoal by microwave heating, J. Alloys Compd., 613(2014), p. 102. doi: 10.1016/j.jallcom.2014.06.016
      [16]
      Y.I. Cho, B.H. Kim, S.J. Kim, J.J. Yun, H. Lee, S.H. Park, and S.C. Jung, Preparation and characterization of zero valent iron powders via transfer type reductor using iron oxide from the acid regeneration process, Adv. Powder Technol., 24(2013), No. 5, p. 858. doi: 10.1016/j.apt.2013.03.006
      [17]
      W.F. Li, J. Zhan, Y.Q. Fan, C. Wei, C.F Zhang, and J.Y. Wang, Research and industrial application of a process for direct reduction of molten high-lead smelting slag, JOM, 69(2017), No. 4, p. 784. doi: 10.1007/s11837-016-2236-z
      [18]
      J. Tang, M.S. Chu, F. Li, Y.T. Tang, Z.G. Liu, and X.X. Xin, Reduction mechanism of high-chromium vanadium–titanium magnetite pellets by H2–CO–CO2 gas mixtures, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 562. doi: 10.1007/s12613-015-1108-9
      [19]
      S.Y. He, H.Y. Sun, C.Q. Hu, J. Li, Q.S. Zhu, and H.Z. Li, Direct reduction of fine iron ore concentrate in a conical fluidized bed, Powder Technol., 313(2017), p. 161. doi: 10.1016/j.powtec.2017.03.007
      [20]
      F. Li, M.S. Chu, J. Tang, Z.G. Liu, C. Feng, and Y.T. Tang, Swelling behavior of high-chromium, vanadium-bearing titanomagnetite pellets in H2−CO−CO2 gas mixtures, JOM, 69(2017), No. 10, p. 1751. doi: 10.1007/s11837-017-2401-z
      [21]
      W. Zhou, B. Xie, W.F Tan, J. Diao, X. Zhang, and H.Y. Li, Non-isothermal crystallization kinetics of spinels in vanadium slag with high CaO content, JOM, 68(2016), No. 9, p. 2520. doi: 10.1007/s11837-016-2037-4
      [22]
      H.Y. Sun, J.S. Wang, Y.H. Han, X.F. She, and Q.G. Xue, Reduction mechanism of titanomagnetite concentrate by hydrogen, Int. J. Miner. Process., 125(2013), p. 122. doi: 10.1016/j.minpro.2013.08.006
      [23]
      Y.Q. Zhao, T.C. Sun, H.Y. Zhao, C. Chen, and X.P. Wang, Effect of reductant type on the embedding direct reduction of beach titanomagnetite concentrate, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 152. doi: 10.1007/s12613-019-1719-7
      [24]
      E. Park and O. Ostrovski, Reduction of titania-ferrous ore by carbon monoxide, ISIJ Int., 43(2003), No. 9, p. 1316. doi: 10.2355/isijinternational.43.1316
      [25]
      Standards Press China, GB/T 9971-2017: Pure Iron Raw Material, Beijing, 2017, p. 1.

    Catalog


    • /

      返回文章
      返回