留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 7
Jul.  2020

图(12)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1640
  • HTML全文浏览量:  373
  • PDF下载量:  44
  • 被引次数: 0
Hong-xia Lan, Xiu-fang Gong, Sen-feng Zhang, Liang Wang, Bin Wang,  and Li-ping Nie, Ultrasonic vibration assisted tungsten inert gas welding of dissimilar metals 316L and L415, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 943-953. https://doi.org/10.1007/s12613-019-1960-0
Cite this article as:
Hong-xia Lan, Xiu-fang Gong, Sen-feng Zhang, Liang Wang, Bin Wang,  and Li-ping Nie, Ultrasonic vibration assisted tungsten inert gas welding of dissimilar metals 316L and L415, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 943-953. https://doi.org/10.1007/s12613-019-1960-0
引用本文 PDF XML SpringerLink
研究论文

超声振动辅助钨极惰性气体焊接异种金属 316L 和 L415

  • Research Article

    Ultrasonic vibration assisted tungsten inert gas welding of dissimilar metals 316L and L415

    + Author Affiliations
    • Ultrasonic vibration assisted tungsten inert gas welding was applied to joining stainless steel 316L and low alloy high strength steel L415. The effect of ultrasonic vibration on the microstructure and mechanical properties of a dissimilar metal welded joint of 316L and L415 was systematically investigated. The microstructures of both heat affected zones of L415 and weld metal were substantially refined, and the clusters of δ ferrite in traditional tungsten inert gas (TIG) weld were changed to a dispersive distribution via the ultrasonic vibration. The ultrasonic vibration promoted the uniform distribution of elements and decreased the micro-segregation tendency in the weld. With the application of ultrasonic vibration, the average tensile strength and elongation of the joint was improved from 613 to 650 MPa and from 16.15% to 31.54%, respectively. The content of Σ3 grain boundaries around the fusion line zone is higher and the distribution is more uniform in the ultrasonic vibration assisted welded joint compared with the traditional one, indicating an excellent weld metal crack resistance.

    • loading
    • [1]
      L.J. Zhang, Q. Pei, J.X. Zhang, Z.Y. Bi, and P.C. Li, Study on the microstructure and mechanical properties of explosive welded 2205/X65 bimetallic sheet, Mater. Des., 64(2014), p. 462. doi: 10.1016/j.matdes.2014.08.013
      [2]
      X.D. Qian, Y. Wang, J.Y.R. Liew, and M.H. Zhang, A load–indentation formulation for cement composite filled pipe-in-pipe structures, Eng. Struct., 92(2015), p. 84. doi: 10.1016/j.engstruct.2015.03.012
      [3]
      R. Kacar and M. Acarer, An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel, J. Mater. Process. Technol., 152(2004), No. 1, p. 91. doi: 10.1016/j.jmatprotec.2004.03.012
      [4]
      A. Karolczuk, M. Kowalski, R. Banski, and F. Żok, Fatigue phenomena in explosively welded steel–titanium clad components subjected to push–pull loading, Int. J. Fatigue, 48(2013), p. 101. doi: 10.1016/j.ijfatigue.2012.10.007
      [5]
      K.D. Ramkumar, A. Singh, S. Raghuvanshi, A. Bajpai, T. Solanki, M. Arivarasu, N. Arivazhagan, and S. Narayanan, Metallurgical and mechanical characterization of dissimilar welds of austenitic stainless steel and super-duplex stainless steel–A comparative study, J. Manuf. Processes, 19(2015), p. 212. doi: 10.1016/j.jmapro.2015.04.005
      [6]
      H.T. Wang, G.Z. Wang, F.Z. Xuan, and S.T. Tu, An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint, Mater. Des., 44(2013), p. 179. doi: 10.1016/j.matdes.2012.07.067
      [7]
      H.J. Aval, Microstructural evolution and mechanical properties of friction stir-welded C71000 copper–nickel alloy and 304 austenitic stainless steel, Int. J. Miner. Metall. Mater., 25(2018), No. 11, p. 1294. doi: 10.1007/s12613-018-1682-8
      [8]
      H.S. Hosseini, M. Shamanian, and A. Kermanpur, Characterization of microstructures and mechanical properties of Inconel 617/310 stainless steel dissimilar welds, Mater. Charact., 62(2011), No. 4, p. 425. doi: 10.1016/j.matchar.2011.02.003
      [9]
      B. Kurt, The interface morphology of diffusion bonded dissimilar stainless steel and medium carbon steel couples, J. Mater. Process. Technol., 190(2007), No. 1-3, p. 138. doi: 10.1016/j.jmatprotec.2007.03.063
      [10]
      C.S. Zhou, Q.Y. Huang, Q. Guo, J.Y. Zheng, X.Y. Chen, J. Zhu, and L. Zhang, Sulphide stress cracking behaviour of the dissimilar metal welded joint of X60 pipeline steel and Inconel 625 alloy, Corros. Sci., 110(2016), p. 242. doi: 10.1016/j.corsci.2016.04.044
      [11]
      T. Sarikka, M. Ahonen, R. Mouginot, P. Nevasmaa, P. Karjalainen-Roikonen, U. Ehrnstén, and H. Hänninen, Microstructural, mechanical, and fracture mechanical characterization of SA508-Alloy182 dissimilar metal weld in view of mismatch state, Int. J. Press. Vessels Pip., 145(2016), p. 13. doi: 10.1016/j.ijpvp.2016.06.004
      [12]
      H. Xu, M.J. Xu, C. Yu, H. Lu, X. Wei, J.M. Chen, and J.J. Xu, Effect of the microstructure in unmixed zone on corrosion behavior of 439 tube/308L tube-sheet welding joint, J. Mater. Process. Technol., 240(2017), p. 162. doi: 10.1016/j.jmatprotec.2016.09.017
      [13]
      T. Watanabe, M. Shiroki, A. Yanagisawa, and T. Sasaki, Improvement of mechanical properties of ferritic stainless steel weld metal by ultrasonic vibration, J. Mater. Process. Technol., 210(2010), No. 12, p. 1646. doi: 10.1016/j.jmatprotec.2010.05.015
      [14]
      Y. Cui, C.L. Xu, and Q. Han, Effect of ultrasonic vibration on unmixed zone formation, Scripta Mater., 55(2006), No. 11, p. 975. doi: 10.1016/j.scriptamat.2006.08.035
      [15]
      S. Kumar, C.S. Wu, G.K. Padhy, and W. Ding, Application of ultrasonic vibrations in welding and metal processing: A status review, J. Manuf. Processes, 26(2017), p. 295. doi: 10.1016/j.jmapro.2017.02.027
      [16]
      G.K. Padhy, C.S. Wu, S. Gao, and L. Shi, Local microstructure evolution in Al 6061-T6 friction stir weld nugget enhanced by ultrasonic vibration, Mater. Des., 92(2016), p. 710. doi: 10.1016/j.matdes.2015.12.094
      [17]
      F.Z. Yang, J. Zhou, and R.R. Ding, Ultrasonic vibration assisted tungsten inert gas welding of dissimilar magnesium alloys, J. Mater. Sci. Technol., 34(2018), No. 12, p. 2240. doi: 10.1016/j.jmst.2018.06.009
      [18]
      P. Vasantharaja, M. Vasudevan, and P. Palanichamy, Effect of welding processes on the residual stress and distortion in type 316LN stainless steel weld joints, J. Manuf. Processes, 19(2015), p. 187. doi: 10.1016/j.jmapro.2014.09.004
      [19]
      J. Liu, H.Y. Zhu, Z. Li, W.F. Cui, and Y. Shi, Effect of ultrasonic power on porosity, microstructure, mechanical properties of the aluminum alloy joint by ultrasonic assisted laser-MIG hybrid welding, Opt. Laser Technol., 119(2019), art. No. 105619.
      [20]
      Q.M. Liu, Y. Zhang, Y.L. Song, F.P. Qi, and Q.J. Zhai, Influence of ultrasonic vibration on mechanical properties and microstructure of 1Cr18Ni9Ti stainless steel, Mater. Des., 28(2007), No. 6, p. 1949. doi: 10.1016/j.matdes.2006.04.025
      [21]
      X.C. Liu, C.S. Wu, and G.K. Padhy, Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding, Scripta Mater., 102(2015), p. 95. doi: 10.1016/j.scriptamat.2015.02.022
      [22]
      M. Ahmadnia, A. Seidanloo, R. Teimouri, Y. Rostamiyan, and K.G. Titrashi, Determining influence of ultrasonic-assisted friction stir welding parameters on mechanical and tribological properties of AA6061 joints, Int. J. Adv. Manuf. Technol., 78(2015), No. 9-12, p. 2009. doi: 10.1007/s00170-015-6784-0
      [23]
      S. Amini and M.R. Amiri, Study of ultrasonic vibrations’ effect on friction stir welding, Int. J. Adv. Manuf. Technol., 73(2014), No. 1-4, p. 127. doi: 10.1007/s00170-014-5806-7
      [24]
      L. Shi, C.S. Wu, S. Gao, and G.K. Padhy, Modified constitutive equation for use in modeling the ultrasonic vibration enhanced friction stir welding process, Scripta Mater., 119(2016), p. 21. doi: 10.1016/j.scriptamat.2016.03.023
      [25]
      H.G. Dong, L.Q. Yang, C. Dong, and S. Kou, Improving arc joining of Al to steel and Al to stainless steel, Mater. Sci. Eng. A, 534(2012), p. 424. doi: 10.1016/j.msea.2011.11.090
      [26]
      L. Shi, C.S. Wu, G.K. Padhy, and S. Gao, Numerical simulation of ultrasonic field and its acoustoplastic influence on friction stir welding, Mater. Des., 104(2016), p. 102. doi: 10.1016/j.matdes.2016.05.001
      [27]
      H.T. Zhang, Q. Chang, J.H. Liu, H. Lu, H. Wu, and J.C. Feng, A novel rotating wire GMAW process to change fusion zone shape and microstructure of mild steel, Mater. Lett., 123(2014), p. 101. doi: 10.1016/j.matlet.2014.03.018
      [28]
      Y.C. Lei, H.L. Xue, W.X. Hu, Z.Z. Liu, and J.C. Yan, Effect of arc ultrasonic vibration on microstructure of joint of plasma arc ‘in situ’ welding of SiCp/6061Al, Sci. Technol. Weld. Joining, 16(2011), No. 7, p. 575. doi: 10.1179/1362171811Y.0000000048
      [29]
      Q.J. Sun, S.B Lin, C.L. Yang, and G.Q. Zhao, Penetration increase of AISI 304 using ultrasonic assisted tungsten inert gas welding, Sci. Technol. Weld. Joining, 14(2009), No. 8, p. 765. doi: 10.1179/136217109X12505932584772
      [30]
      X. Jian, H. Xu, T.T. Meek, and Q. Han, Effect of power ultrasound on solidification of aluminum A356 alloy, Mater. Lett., 59(2005), No. 2-3, p. 190. doi: 10.1016/j.matlet.2004.09.027
      [31]
      W.L. Dai, Effects of high-intensity ultrasonic-wave emission on the weldability of aluminum alloy 7075-T6, Mater. Lett., 57(2003), No. 16-17, p. 2447. doi: 10.1016/S0167-577X(02)01262-4
      [32]
      Z.W. Xu, J.C. Yan, W. Chen, and S.Q. Yang, Effect of ultrasonic vibration on the grain refinement and SiC particle distribution in Zn-based composite filler metal, Mater. Lett., 62(2008), No. 17-18, p. 2615. doi: 10.1016/j.matlet.2007.12.065
      [33]
      T. Yuan, Z. Luo, and S. Kou, Mechanism of grain refining in AZ91 Mg welds by arc oscillation, Sci. Technol. Weld. Joining, 22(2017), No. 2, p. 97. doi: 10.1080/13621718.2016.1199127
      [34]
      Y. Morisada, H. Fujii, F. Inagaki, and M. Kamai, Development of high frequency tungsten inert gas welding method, Mater. Des., 44(2013), p. 12. doi: 10.1016/j.matdes.2012.07.054
      [35]
      X.C. Liu and C.S. Wu, Elimination of tunnel defect in ultrasonic vibration enhanced friction stir welding, Mater. Des., 90(2016), p. 350. doi: 10.1016/j.matdes.2015.10.131
      [36]
      C. Wichan and S. Loeshpahn, Effect of filler alloy on microstructure, mechanical and corrosion behaviour of dissimilar weldment between Aisi 201 stainless steel and low carbon steel sheets produced by a gas tungsten arc welding, Adv. Mater. Res., 581-582(2012), p. 808. doi: 10.4028/www.scientific.net/AMR.581-582.808
      [37]
      G.I. Eskin, Principles of ultrasonic treatment: Application for light alloys melts, Adv. Perform. Mater., 4(1997), No. 2, p. 223. doi: 10.1023/A:1008603815525
      [38]
      M. Talebi, M. Setareh, M. Saffar-Avval, and R.H. Abardeh, Numerical investigation of natural convection heat transfer in a cylindrical enclosure due to ultrasonic vibrations, Ultrasonics, 76(2017), p. 52. doi: 10.1016/j.ultras.2016.12.010
      [39]
      K.S. Suslick, Sonochemistry, J. Cheminform., 47(1990), No. 4949, p. 1439.
      [40]
      P. Pocwiardowski, H. Lasota, and C. Ravn, Near boundary acoustic streaming in Ni−Fe alloy electrodeposition control, Acta Acust. United Acust., 91(2005), No. 2, p. 365.
      [41]
      C.L. Zhang, M.S. Wu, and J.L. Du, Improving weld quality by arc-excited ultrasonic treatment, Tsinghua Sci. Technol., 6(2001), No. 5, p. 475.
      [42]
      K.D. Ramkumar, S.S. Prabu, and N. Arivazhagan, Investigation on the fusion zone microstructures and mechanical integrity of AISI 904L and Inconel 625 weld joints, Mater. Res. Express, 6(2019), art. No. 086540. doi: 10.1088/2053-1591/ab1883
      [43]
      G.S. Bai, S.P. Lu, D.Z. Li, and Y.Y. Li, Intergranular corrosion behavior associated with delta−ferrite transformation of Ti-modified Super304H austenitic stainless steel, Corros. Sci., 90(2015), p. 347. doi: 10.1016/j.corsci.2014.10.031
      [44]
      S.Y. Zhou, G.Y. Ma, D.J. Wu, D.S. Chai, and M.K. Lei, Ultrasonic vibration assisted laser welding of nickel-based alloy and austenite stainless steel, J. Manuf. Processes, 31(2018), p. 759. doi: 10.1016/j.jmapro.2017.12.023
      [45]
      R.A. Masumura, P.M. Hazzledine, and C.S. Pande, Yield stress of fine grained materials, Acta Mater., 46(1998), No. 13, p. 4527. doi: 10.1016/S1359-6454(98)00150-5
      [46]
      B. Liu, P. Eisenlohr, F. Roters, and D. Raabe, Simulation of dislocation penetration through a general low-angle grain boundary, Acta Mater., 60(2012), No. 13-14, p. 5380. doi: 10.1016/j.actamat.2012.05.002
      [47]
      C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, and H. Dong, Effect of microstructural refinement on the toughness of low carbon martensitic steel, Scripta Mater., 58(2008), No. 6, p. 492. doi: 10.1016/j.scriptamat.2007.10.053
      [48]
      C.Y. Zhang, Q.F. Wang, J.X. Ren, R.X. Li, M.Z. Wang, and F.M. Zhang, Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel, Mater. Sci. Eng. A, 534(2012), p. 339. doi: 10.1016/j.msea.2011.11.078
      [49]
      L. Wang, B. Wang, and P.S. Zhou, Misorientation, grain boundary, texture and recrystallization study in X90 hot bend related to mechanical properties, Mater. Sci. Eng. A, 711(2018), p. 588. doi: 10.1016/j.msea.2017.11.065
      [50]
      R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock, Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels, Mater. Sci. Eng. A, 441(2006), No. 1-2, p. 1. doi: 10.1016/j.msea.2006.08.095
      [51]
      E.M. Lehockey, A.M. Brennenstuhl, and I. Thompson, On the relationship between grain boundary connectivity, coincident site lattice boundaries, and intergranular stress corrosion cracking, Corros. Sci., 46(2004), No. 10, p. 2383. doi: 10.1016/j.corsci.2004.01.019
      [52]
      Z.R. Chen, Y.H. Lu, X.F. Ding, and T. Shoji, Microstructural and hardness investigations on a dissimilar metal weld between low alloy steel and Alloy 82 weld metal, Mater. Charact., 121(2016), p. 166. doi: 10.1016/j.matchar.2016.09.033

    Catalog


    • /

      返回文章
      返回