留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 9
Sep.  2020

图(7)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1623
  • HTML全文浏览量:  489
  • PDF下载量:  25
  • 被引次数: 0
Jun-jun Yan, Xue-fei Huang, and Wei-gang Huang, High-temperature oxidation behavior of 9Cr‒5Si‒3Al ferritic heat-resistant steel, Int. J. Miner. Metall. Mater., 27(2020), No. 9, pp. 1244-1250. https://doi.org/10.1007/s12613-019-1961-z
Cite this article as:
Jun-jun Yan, Xue-fei Huang, and Wei-gang Huang, High-temperature oxidation behavior of 9Cr‒5Si‒3Al ferritic heat-resistant steel, Int. J. Miner. Metall. Mater., 27(2020), No. 9, pp. 1244-1250. https://doi.org/10.1007/s12613-019-1961-z
引用本文 PDF XML SpringerLink
研究论文

9Cr‒5Si‒3Al铁素体耐热钢的高温氧化行为

  • Research Article

    High-temperature oxidation behavior of 9Cr‒5Si‒3Al ferritic heat-resistant steel

    + Author Affiliations
    • To improve the oxidation properties of ferritic heat-resistant steels, an Al-bearing 9Cr‒5Si‒3Al ferritic heat-resistant steel was designed. We then conducted cyclic oxidation tests to investigate the high-temperature oxidation behavior of 9Cr‒5Si and 9Cr‒5Si‒3Al ferritic heat-resistant steels at 900 and 1000°C. The characteristics of the oxide layer were analyzed by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results show that the oxidation kinetics curves of the two tested steels follow the parabolic law, with the parabolic rate constant kp of 9Cr‒5Si‒3Al steel being much lower than that of 9Cr‒5Si steel at both 900 and 1000°C. The oxide film on the surface of the 9Cr‒5Si alloy exhibits Cr2MnO4 and Cr2O3 phases in the outer layer after oxidation at 900 and 1000°C. However, at oxidation temperatures of 900 and 1000°C, the oxide film of the 9Cr‒5Si‒3Al alloy consists only of Al2O3 and its oxide layer is thinner than that of the 9Cr‒5Si alloy. These results indicate that the addition of Al to the 9Cr‒5Si steel can improve its high-temperature oxidation resistance, which can be attributed to the formation of a continuous and compact Al2O3 film on the surface of the steel.

    • loading
    • [1]
      D. B., S.M. Hong, K.H. Lee, M.Y. Huh, J.Y. Suh, S.C. Lee, and W.S. Jung, High-temperature creep behavior and microstructural evolution of an 18Cr9Ni3CuNbVN austenitic stainless steel, Mater. Charact., 93(2014), p. 52. doi: 10.1016/j.matchar.2014.03.012
      [2]
      M.H. Jang, J.Y. Kang, J.H. Jang, T.H. Lee, and C. Lee, Hot deformation behavior and microstructural evolution of alumina-forming austenitic heat-resistant steels during hot compression, Mater. Charact., 123(2017), p. 207. doi: 10.1016/j.matchar.2016.11.038
      [3]
      E. Huttunen-Saarivirta, V.T. Kuokkala, and P. Pohjanne, Thermally grown oxide films and corrosion performance of ferritic stainless steels under simulated exhaust gas condensate conditions, Corros. Sci., 87(2014), p. 344. doi: 10.1016/j.corsci.2014.06.041
      [4]
      P.D. Jablonski and D.E. Alman, Oxidation resistance of novel ferritic stainless steels alloyed with titanium for SOFC interconnect applications, J. Power Sources, 180(2008), No. 1, p. 433. doi: 10.1016/j.jpowsour.2008.02.010
      [5]
      D. Rojas, J. Garcia, O. Prat, G. Sauthoff, and A.R. Kaysser-Pyzalla, 9%Cr heat resistant steels: Alloy design, microstructure evolution and creep response at 650°C, Mater. Sci. Eng. A, 528(2011), No. 15, p. 5164. doi: 10.1016/j.msea.2011.03.037
      [6]
      L. Tan, X. Ren and T.R. Allen, Corrosion behavior of 9‒12% Cr ferritic‒martensitic steels in supercritical water, Corros. Sci., 52(2010), No. 4, p. 1520. doi: 10.1016/j.corsci.2009.12.032
      [7]
      X.S. Zhou, Y.C. Liu, C.X. Liu, and B.Q. Ning, Evolution of creep damage in a modified ferritic heat resistant steel with excellent short-term creep performance and its oxide layer characteristic, Mater. Sci. Eng. A, 608(2014), p. 46. doi: 10.1016/j.msea.2014.04.075
      [8]
      Y.P. Zeng, J.D. Jia, W.H. Cai, S.Q. Dong, and Z.C. Wang, Effect of long-term service on the precipitates in P92 steel, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 913. doi: 10.1007/s12613-018-1640-5
      [9]
      C. Zhang, L. Cui, Y.C. Liu, C.X. Liu, and H.J. Li, Microstructures and mechanical properties of friction stir welds on 9% Cr reduced activation ferritic/martensitic steel, J. Mater. Sci. Technol., 34(2018), No. 5, p. 756. doi: 10.1016/j.jmst.2017.11.049
      [10]
      X.S. Zhou, C.X. Liu, L.M. Yu, Y.C. Liu, and H.J. Li, Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: A review, J. Mater. Sci. Technol., 31(2015), No. 3, p. 235. doi: 10.1016/j.jmst.2014.12.001
      [11]
      M.H. Jang, J. Moon, J.Y. Kang, H.Y. Ha, B.G. Choi, T.H. Lee, and C. Lee, Effect of tungsten addition on high-temperature properties and microstructure of alumina-forming austenitic heat-resistant steels, Mater. Sci. Eng. A, 647(2015), p. 163. doi: 10.1016/j.msea.2015.09.018
      [12]
      J. Ren, L.M. Yu, Y.C. Liu, Z.Q. Ma, C.X. Liu, H.J. Li, and J.F. Wu, Corrosion behavior of an Al added high-Cr ODS steel in supercritical water at 600°C, Appl. Surf. Sci., 480(2019), p. 969. doi: 10.1016/j.apsusc.2019.03.019
      [13]
      D.N. Zou, Y.Q. Zhou, X. Zhang, W. Zhang, and Y. Han, High temperature oxidation behavior of a high Al-containing ferritic heat-resistant stainless steel, Mater. Charact., 136(2018), p. 435. doi: 10.1016/j.matchar.2017.11.038
      [14]
      Y.L. Xu, X. Zhang, L.J. Fan, J. Li, X.J. Yu, X.S. Xiao, and L.Z. Jiang, Improved oxidation resistance of 15 wt.% Cr ferritic stainless steels containing 0.08−2.45wt.% Al at 1000°C in air, Corros. Sci., 100(2015), p. 311. doi: 10.1016/j.corsci.2015.08.007
      [15]
      J. Brnic, G. Turkal, S. Krscanski, D. Lanc, M. Canadija, and M. Brcic, Information relevant for the design of structure: Ferritic–Heat resistant high chromium steel X10CrAlSi25, Mater. Des., 63(2014), p. 508. doi: 10.1016/j.matdes.2014.06.051
      [16]
      C.Z. Lu, J.Y. Li, and Z. Fang, Effects of asymmetric rolling process on ridging resistance of ultra-purified 17%Cr ferritic stainless steel, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 216. doi: 10.1007/s12613-018-1564-0
      [17]
      H. Fujikawa and S.B. Newcomb, High temperature oxidation behaviour of high al content ferritic and austenitic stainless steels with and without rare-earth element addition, Oxid. Met., 77(2012), No. 1-2, p. 85. doi: 10.1007/s11085-011-9274-2
      [18]
      L.L. Wei, L.Q. Chen, M.Y. Ma, H.L. Liu, and R.D.K. Misra, Oxidation behavior of ferritic stainless steels in simulated automotive exhaust gas containing 5vol.% water vapor, Mater. Chem. Phys., 205(2018), p. 508. doi: 10.1016/j.matchemphys.2017.11.051
      [19]
      G.R. Holcomb and D.E. Alman, The effect of manganese additions on the reactive evaporation of chromium in Ni−Cr alloys, Scripta Mater., 54(2006), No. 10, p. 1821. doi: 10.1016/j.scriptamat.2006.01.026
      [20]
      J. Zurek, D.J. Yong, E. Essuman, M. Hänsel, H.J. Penkalla, L. Niewolak, and W.J. Quadakkers, Growth and adherence of chromia based surface scales on Ni-base alloys in high- and low-pO2 gases, Mater. Sci. Eng. A, 477(2008), No. 1-2, p. 259. doi: 10.1016/j.msea.2007.05.035
      [21]
      T.B. Gu, C.G. Yin, W.C. Ma, and G.Y. Chen, Municipal solid waste incineration in a packed bed: A comprehensive modeling study with experimental validation, Appl. Energy, 247(2019), p. 127. doi: 10.1016/j.apenergy.2019.04.014
      [22]
      Y. Li, X.G. Zhao, Y.B. Li, and X.Y. Li, Waste incineration industry and development policies in China, Waste Manage., 46(2015), p. 234. doi: 10.1016/j.wasman.2015.08.008
      [23]
      D. Mudgal, L. Ahuja, S. Singh, and S. Prakash, Corrosion behaviour of Cr3C2‒NiCr coated superalloys under actual medical waste incinerator, Surf. Coat. Technol., 325(2017), p. 145. doi: 10.1016/j.surfcoat.2017.06.050
      [24]
      S. Swaminathan, Y.S. Lee, and D. Kim, Long term high temperature oxidation characteristics of La and Cu alloyed ferritic stainless steels for solid oxide fuel cell interconnects, J. Power Sources, 327(2016), p. 104. doi: 10.1016/j.jpowsour.2016.07.044
      [25]
      H. Ebrahimifar and M. Zandrahimi, Mn coating on AISI 430 ferritic stainless steel by pack cementation method for SOFC interconnect applications, Solid State Ionics, 183(2011), No. 1, p. 71. doi: 10.1016/j.ssi.2010.12.017
      [26]
      D. Mudgal, L. Ahuja, D. Bhatia, S. Singh, and S. Prakash, High temperature corrosion behaviour of superalloys under actual waste incinerator environment, Eng. Fail. Anal., 63(2016), p. 160. doi: 10.1016/j.engfailanal.2016.02.016

    Catalog


    • /

      返回文章
      返回