Cite this article as: |
Jun-wu Li, Xing Han, Rong-xia Chai, Fang-qin Cheng, Mei Zhang, and Min Guo, Metal-doped (Cu,Zn)Fe2O4 from integral utilization of toxic Zn-containing electric arc furnace dust: An environment-friendly heterogeneous Fenton-like catalyst, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 996-1006. https://doi.org/10.1007/s12613-019-1962-y |
[1] |
V.N. Stathopoulos, A. Papandreou, D. Kanellopoulou, and C.J. Stournaras, Structural ceramics containing electric arc furnace dust, J. Hazard. Mater., 262(2013), p. 91. doi: 10.1016/j.jhazmat.2013.08.028
|
[2] |
P.E. Tsakiridis, A. Katsiapi, and S. Agatzini-Leonardou, Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning, J. Hazard. Mater., 179(2010), No. 1-3, p. 1. doi: 10.1016/j.jhazmat.2010.01.059
|
[3] |
H.G. Wang, Y. Li, J.M. Gao, M. Zhang, and M. Guo, A novel hydrothermal method for zinc extraction and separation from zinc ferrite and electric arc furnace dust, Int. J. Miner. Metall. Mater., 23(2016), No. 2, p. 146. doi: 10.1007/s12613-016-1221-4
|
[4] |
F. Pinakidou, M. Katsikini, E.C. Paloura, P. Kavouras, T. Kehagias, P. Komninou, T. Karakostas, and A. Erko, On the distribution and bonding environment of Zn and Fe in glasses containing electric arc furnace dust: A μ-XAFS and μ-XRF study, J. Hazard. Mater., 142(2007), No. 1-2, p. 297. doi: 10.1016/j.jhazmat.2006.08.016
|
[5] |
H.W. Ma, K. Matsubae, K. Nakajima, M.S. Tsai, K.H. Shao, P.C. Chen, C.H. Lee, and T. Nagasaka, Substance flow analysis of zinc cycle and current status of electric arc furnace dust management for zinc recovery in Taiwan, Resour. Conserv. Recycl., 56(2011), No. 1, p. 134. doi: 10.1016/j.resconrec.2011.08.005
|
[6] |
Y.C. Zhao and R. Stanforth, Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium, J. Hazard. Mater., 80(2000), No. 1-3, p. 223. doi: 10.1016/S0304-3894(00)00305-8
|
[7] |
C.C. Su and Y.H. Shen, Deflocculation and classification of electric arc furnace dust in aqueous solution, Sep. Sci. Technol., 44(2009), No. 8, p. 1816. doi: 10.1080/01496390902775299
|
[8] |
B. Liu, S.G. Zhang, B.M. Steenari, and C. Ekberg, Synthesis and properties of SrFe12O19 obtained by solid waste recycling of oily cold rolling mill sludge, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 642. doi: 10.1007/s12613-019-1772-2
|
[9] |
H.G. Wang, M. Zhang, and M. Guo, Utilization of Zn-containing electric arc furnace dust for multi-metal doped ferrite with enhanced magnetic property: From hazardous solid waste to green product, J. Hazard. Mater., 339(2017), p. 248. doi: 10.1016/j.jhazmat.2017.06.039
|
[10] |
H.G. Wang, W.W. Liu, N.N. Jia, M. Zhang, and M. Guo, Facile synthesis of metal-doped Ni−Zn ferrite from treated Zn-containing electric arc furnace dust, Ceram. Int., 43(2017), No. 2, p. 1980. doi: 10.1016/j.ceramint.2016.10.164
|
[11] |
J.M. Gao, M. Zhang, and M. Guo, Direct fabrication and characterization of metal doped magnesium ferrites from treated laterite ores by the solid state reaction method, Ceram. Int., 41(2015), No. 6, p. 8155. doi: 10.1016/j.ceramint.2015.03.030
|
[12] |
E.G. Garrido-Ramírez, B.K.G. Theng, and M.L. Mora, Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions — A review, Appl. Clay Sci., 47(2010), No. 3-4, p. 182. doi: 10.1016/j.clay.2009.11.044
|
[13] |
Y.B. Wang, H.Y. Zhao, M.F. Li, J. Fan, and G.H. Zhao, Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid, Appl. Catal. B, 147(2014), p. 534. doi: 10.1016/j.apcatb.2013.09.017
|
[14] |
J.H. Ramirez, F.J. Maldonadohodar, A.F. Pérez-Cadenas, C. Moreno-Castilla, C.A. Costa, and L.M. Madeira, Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts, Appl. Catal. B, 75(2007), No. 3-4, p. 312. doi: 10.1016/j.apcatb.2007.05.003
|
[15] |
Y.F. Diao, Z.K. Yan, M. Guo, and X.D. Wang, Magnetic multi-metal co-doped magnesium ferrite nanoparticles: an efficient visible light-assisted heterogeneous Fenton-like catalyst synthesized from saprolite laterite ore, J. Hazard. Mater., 344(2018), p. 829. doi: 10.1016/j.jhazmat.2017.11.029
|
[16] |
R. Sharma and S. Singhal, Spinel ferrite mediated photo-Fenton degradation of phenolic analogues: A detailed study employing two distinct inorganic oxidants, Clean Soil Air Water, 46(2018), No. 1, art. No. 1700605. doi: 10.1002/clen.201700605
|
[17] |
G. Fan, T. Ji, and L. Feng, Visible-light-induced photocatalyst based on cobalt-doped zinc ferrite nanocrystals, Ind. Eng. Chem. Res., 51(2012), No. 42, p. 13639. doi: 10.1021/ie201933g
|
[18] |
Y. Huang, C. Han, Y.Q. Liu, M.N. Nadagouda, L. Machala, K.E. O’Shea, V.K. Sharma, and D.D. Dionysiou, Degradation of atrazine by ZnxCu1−xFe2O4 nanomaterial-catalyzed sulfite under UV–vis light irradiation: Green strategy to generate SO4•−, Appl. Catal. B, 221(2018), p. 380. doi: 10.1016/j.apcatb.2017.09.001
|
[19] |
W. Zhao, C. Liang, B.B. Wang, and S.T. Xing, Enhanced photocatalytic and Fenton-like performance of CuOx decorated ZnFe2O4, ACS Appl. Mater. Interfaces, 9(2017), No. 48, p. 41927. doi: 10.1021/acsami.7b14799
|
[20] |
Z.K. Yan, J.M. Gao, Y. Li., M. Zhang, and M. Guo, Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite, RSC Adv., 5(2015), No. 112, p. 92778. doi: 10.1039/C5RA17145H
|
[21] |
F. Tudorache, P. D. Popa, M. Dobromir, and F. Iacomi, Studies on the structure and gas sensing properties of nickel–cobalt ferrite thin films prepared by spin coating, Mater. Sci. Eng. B, 178(2013), No. 19, p. 1334. doi: 10.1016/j.mseb.2013.03.019
|
[22] |
Y.L. Zhao, C.P. Lin, H.J. Bi, Y.G. Liu, and Q.S. Yan, Magnetically separable CuFe2O4/AgBr composite photocatalysts: Preparation. characterization. photocatalytic activity and photocatalytic mechanism under visible light, Appl. Surf. Sci., 392(2017), p. 701. doi: 10.1016/j.apsusc.2016.09.099
|
[23] |
T. Mathew, N.R. Shiju, R. Sreekumar, S. Bollapragada, Gopinath, and S. Chinnakonda, Cu−Co synergism in Cu1-xCoxFe2O4-catalysis and XPS aspects, J. Catal., 210(2002), No. 2, p. 405. doi: 10.1006/jcat.2002.3712
|
[24] |
C. Cai, Z.Y. Zhang, L. Jin, S. Ni, Z. Hui, and D.D. Dionysiou, Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of Orange II in water, Appl. Catal. B, 182(2016), p. 456. doi: 10.1016/j.apcatb.2015.09.056
|
[25] |
H. Lin, Z. Hui, W. Xue, L. Wang, and W. Jie, Electro-Fenton removal of Orange II in a divided cell: Reaction mechanism, degradation pathway and toxicity evolution, Sep. Purif. Technol., 122(2014), p. 533. doi: 10.1016/j.seppur.2013.12.010
|
[26] |
Y.B. Wang, H.Y. Zhao, and G.H. Zhao, Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants, Appl. Catal. B, 164(2015), p. 396. doi: 10.1016/j.apcatb.2014.09.047
|
[27] |
X. Zhong, J.B. Jr, D. Duprez, H. Zhang, and S. Royer, Modulating the copper oxide morphology and accessibility by using micro-/mesoporous SBA-15 structures as host support: Effect on the activity for the CWPO of phenol reaction, Appl. Catal. B, 121-122(2012), p. 123. doi: 10.1016/j.apcatb.2012.04.002
|
[28] |
X. Han, H.Y. Zhang, T. Chen, M. Zhang, and M. Guo, Facile synthesis of metal-doped magnesium ferrite from saprolite laterite as an effective heterogeneous Fenton-like catalyst, J. Mol. Liq., 272(2018), p. 43. doi: 10.1016/j.molliq.2018.09.045
|
[29] |
M. Dindarsafa, A. Khataee, B. Kaymak, B. Vahid, A. Karimi, and A. Rahmani, Heterogeneous sono-Fenton-like process using martite nanocatalyst prepared by high energy planetary ball milling for treatment of a textile dye, Ultrason. Sonochem., 34(2017), p. 389. doi: 10.1016/j.ultsonch.2016.06.016
|
[30] |
H. Hassan and B.H. Hameed, Fe–clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4, Chem. Eng. J., 171(2011), No. 3, p. 912. doi: 10.1016/j.cej.2011.04.040
|