留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 8
Aug.  2020

图(13)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  5752
  • HTML全文浏览量:  2201
  • PDF下载量:  31
  • 被引次数: 0
Di Liu, Min-jie Lian, Cai-wu Lu, and Wen Zhang, Effect of the lenticles on moisture migration in capillary zone of tailings dam, Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1036-1045. https://doi.org/10.1007/s12613-020-1963-x
Cite this article as:
Di Liu, Min-jie Lian, Cai-wu Lu, and Wen Zhang, Effect of the lenticles on moisture migration in capillary zone of tailings dam, Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1036-1045. https://doi.org/10.1007/s12613-020-1963-x
引用本文 PDF XML SpringerLink
研究论文

细粒夹层对尾矿坝毛细带水分迁移的影响

  • Research Article

    Effect of the lenticles on moisture migration in capillary zone of tailings dam

    + Author Affiliations
    • Small-particle interlayers (lenticles) show some characteristic hydraulic properties and can affect the movement of unsaturated water. In this study, we developed a novel online capillary-water-absorption monitoring device and conducted three groups of comparison tests to simulate lenticle positions and thicknesses with respect to the capillary rise. The results show that the characteristic wetting front exhibits a fast rise in the early stage, a slow rise in the middle stage, and stability in the later stage. The motion of the capillary water in the lenticle is mainly transversal, with the upward curve being “flat,” and the longer is “flat,” the longer is the time needed for the water to move. The interlayer can form a capillary stagnation zone with moisture content close to saturation. The high interlayer may form a discontinuous corrugated capillary zone. Thus, when the wetting front reaches the “coarse-grain (lower)−fine-grain (upper)” interface, the “anti-capillary barrier effect” results in more moisture in the upper layer. Thus, when the wetting front of the capillary water reaches the “fine-grain (upper)−coarse-grain (lower)” interface, the “capillary barrier effect” causes the moisture content of the upper tailings to decreases sharply because of the horizontal movement of the water in the fine medium. It is clear that the presence of lenticles can retard the rise of capillary water by storing water.

    • loading
    • [1]
      C.H. Li, L. Bu, and L.G. Chen, Research situation of the disaster-causing mechanism of tailing dams and its developing trend, Chin. J. Eng., 38(2016), No. 8, p. 1039.
      [2]
      X.B. Li, W.D. Jiang, and H.J. He, Study on distributing state of lenticle in tailings fill dam, Rock Soil Mech., 25(2004), No. 6, p. 947.
      [3]
      W. Yuan, B. Bai, X.C. Li, and H.B. Wang, Parameters sensitivity analysis of lenticles impacting on tailings dam safety, J. Cent. South Univ. Sci. Technol., 44(2013), No. 3, p. 1174.
      [4]
      S.H. Yin, A.X. Wu, S.Y. Wang, and H.J. Wang, Simulation of solute transportation within porous particles during the bioleaching process, Int. J. Miner. Metall. Mater., 17(2010), No. 4, p. 389. doi: 10.1007/s12613-010-0331-7
      [5]
      W.D. Jiang, Fractal character of lenticles and its influence on sediment state in tailings dam, J. Cent. South Univ. Technol., 12(2005), No. 6, p. 753. doi: 10.1007/s11771-005-0082-1
      [6]
      J.H. Li, L. Du, R. Chen, and L.M. Zhang, Numerical investigation of the performance of covers with capillary barrier effects in South China, Comput. Geotech., 48(2013), p. 304. doi: 10.1016/j.compgeo.2012.08.008
      [7]
      J. Götz, J.T. Weidinger, S. Kraxberger, A.L. Hennecke, J. Buckel, and B.R. Adhikari, Geomorphologic and hydrogeologic characteristics of populated rockslide deposits, J. Water Resour. Prot., 7(2015), No. 13, p. 1038. doi: 10.4236/jwarp.2015.713085
      [8]
      M.B. Huang, S.L. Barbour, A. Elshorbagy, J.D. Zettl, and B.C. Si, Infiltration and drainage processes in multi-layered coarse soils, Can. J. Soil Sci., 91(2011), No. 2, p. 169. doi: 10.4141/cjss09118
      [9]
      P. Hoyer, V. Alvarado, and M.S. Carvalho, Snap-off in constricted capillary with elastic interface, Phys. Fluids, 28(2016), No. 1, art. No. 012104. doi: 10.1063/1.4939150
      [10]
      R.T. Armstrong and S. Berg, Interfacial velocities and capillary pressure gradients during Haines jumps, Phys. Rev. E, 88(2013), No. 4, art. No. 043010. doi: 10.1103/PhysRevE.88.043010
      [11]
      D. Wisser, S. Frolking, S. Hagen, and M.F.P. Bierkens, Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs, Water Resour. Res., 49(2013), No. 9, p. 5732. doi: 10.1002/wrcr.20452
      [12]
      S. Gradmann and C. Beaumont, Coupled fluid flow and sediment deformation in margin-scale salt-tectonic systems: 2. Layered sediment models and application to the northwestern Gulf of Mexico, Tectonics, 31(2012), No. 4, art. No. TC4011. doi: 10.1029/2011TC003033
      [13]
      D. Mancarella and V. Simeone, Capillary barrier effects in unsaturated layered soils, with special reference to the pyroclastic veneer of the Pizzo d’Alvano, Campania, Italy, Bull. Eng. Geol. Environ., 71(2012), No. 4, p. 791. doi: 10.1007/s10064-012-0419-6
      [14]
      J. Mohammadzadeh-Habili and M. Heidarpour, Application of the Green-Ampt model for infiltration into layered soils, J. Hydrol., 527(2015), p. 824. doi: 10.1016/j.jhydrol.2015.05.052
      [15]
      M.A. Herrada, A. Gutiérrez-Martin, and J.M. Montanero, Modeling infiltration rates in a saturated/unsaturated soil under the free draining condition, J. Hydrol., 515(2014), p. 10. doi: 10.1016/j.jhydrol.2014.04.026
      [16]
      C. Yang, D.C. Sheng, and J.P. Carter, Effect of hydraulic hysteresis on seepage analysis for unsaturated soils, Comput. Geotech., 41(2012), p. 36. doi: 10.1016/j.compgeo.2011.11.006
      [17]
      C.H. Zhu and S.B. Zhang, Rainfall infiltration laws of compacted loess based on laboratory model tests, Chin. J. Geotech. Eng., 40(2018), No. 6, p. 1117.
      [18]
      J.C. Stormont and C.E. Morris, Unsaturated drainage layers for diversion of infiltrating water, J. Irrig. Drain. Eng., 123(1997), No. 5, p. 364. doi: 10.1061/(ASCE)0733-9437(1997)123:5(364)
      [19]
      J.C. Stormont, The effectiveness of two capillary barriers on a 10% slope, Geotech. Geol. Eng., 14(1996), No. 4, p. 243. doi: 10.1007/BF00421943
      [20]
      J.C. Stormont and C.E. Morris, Method to estimate water storage capacity of capillary barriers, J. Geotech. Geoenviron. Eng., 124(1998), No. 4, p. 297. doi: 10.1061/(ASCE)1090-0241(1998)124:4(297)
      [21]
      S. Bandyopadhyay and S. Chakraborty, Thermophoretically driven capillary transport of nanofluid in a microchannel, Adv. Powder Technol., 29(2018), No. 4, p. 964. doi: 10.1016/j.apt.2018.01.014
      [22]
      W.J. Zhang, C. Sun, and Q.W. Qiu, Characterizing of a capillary barrier evapotranspirative cover under high precipitation conditions, Environ. Earth Sci., 75(2016), No. 6, p. 513. doi: 10.1007/s12665-015-5214-9
      [23]
      H. Yang, H. Rahardjo, E.C. Leong, and D.G. Fredlund, A study of infiltration on three sand capillary barriers, Can. Geotech. J., 41(2004), No. 4, p. 629. doi: 10.1139/t04-021
      [24]
      S.S.W. Mavimbela and L.D. Van Rensburg, Characterising infiltration and internal drainage of South African dryland soils: Dryland soils infiltration and internal drainage properties, Earth Surf. Processes Landforms, 42(2017), No. 3, p. 414. doi: 10.1002/esp.3991
      [25]
      J.G. Zornberg, A. Bouazza, and J.S. McCartney, Geosynthetic capillary barriers: Current state of knowledge, Geosynthetics Int., 17(2010), No. 5, p. 273. doi: 10.1680/gein.2010.17.5.273
      [26]
      D.E. Hill and J.Y. Parlange, Wetting front instability in layered soils, Soil Sci. Soc. Am. J., 36(1972), No. 5, p. 697. doi: 10.2136/sssaj1972.03615995003600050010x
      [27]
      R.S. Baker and D. Hillel, Laboratory tests of a theory of fingering during infiltration into layered soils, Soil Sci. Soc. Am. J., 54(1990), No. 1, p. 20. doi: 10.2136/sssaj1990.03615995005400010004x
      [28]
      R. Hao, B. Shi, D.F. Cao, G.Q. Wei, Y. Zhang, and S.J. Mei, Experimental study on capillary water transport model based on AHFO technology, Chin. J. Geotech. Eng., 41(2019), No. 2, p. 376.
      [29]
      W.G. Liu, S.H. Jia, Y.W. Fan, G.L. Bai, and T. Zhao, Numerical simulation and experimental validation of sand-layered soil water infiltration under film hole irrigation, J. Water Resour. Water Eng., 29(2018), No. 4, p. 243.

    Catalog


    • /

      返回文章
      返回