留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 1
Jan.  2021

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2453
  • HTML全文浏览量:  395
  • PDF下载量:  60
  • 被引次数: 0
Shahab Shahsavar, Mostafa Ketabchi, and Saeed Bagherzadeh, Fabrication of robust aluminum–carbon nanotube composites using ultrasonic assembly and rolling process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 160-167. https://doi.org/10.1007/s12613-020-1969-4
Cite this article as:
Shahab Shahsavar, Mostafa Ketabchi, and Saeed Bagherzadeh, Fabrication of robust aluminum–carbon nanotube composites using ultrasonic assembly and rolling process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 160-167. https://doi.org/10.1007/s12613-020-1969-4
引用本文 PDF XML SpringerLink
研究论文

采用超声组装与滚压工艺制备铝–碳纳米管复合材料

  • Research Article

    Fabrication of robust aluminum–carbon nanotube composites using ultrasonic assembly and rolling process

    + Author Affiliations
    • This study introduced a novel fabrication of aluminum–carbon nanotube (CNT) composites by employing bulk acoustic waves and accumulative roll bonding (ARB). In this method, CNT particles were aligned using ultrasonic standing wave in an aqueous media, and the arrayed particles were precipitated on the aluminum plate substrate. Then, the plates rolled on each other through the ARB process with four passes. Optical and scanning electron micrographs demonstrated the effective aligning of CNTs on the aluminum substrate with a negligible deviation of arrayed CNTs through the ARB process. The X-ray diffraction pattern of the developed composites showed no peaks for carbon and aluminum carbide. In addition, tensile tests showed that the longitudinal strength of the specimens processed with aligned CNTs was significantly greater than that of the specimens with common randomly dispersed particles. The proposed technique is beneficial for the fabrication of Al–CNT composites with directional mechanical strength.

    • loading
    • [1]
      T.W. Odom, J.L. Huang, P. Kim, and C.M. Lieber, Structure and electronic properties of carbon nanotubes, J. Phys. Chem. B, 104(2000), No. 13, p. 2794. doi: 10.1021/jp993592k
      [2]
      B.I. Yakobson and P. Avouris, Mechanical properties of carbon nanotubes, [in] M.S. Dresselhaus, G. Dresselhaus, and P. Avouris, eds., Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Topics in Applied Physics, Vol. 80, Springer, Berlin, Heidelberg, 2001, p. 287.
      [3]
      P.J.F. Harris, Carbon nanotube composites, Int. Mater. Rev., 49(2004), No. 1, p. 31. doi: 10.1179/095066004225010505
      [4]
      B. Arash, Q. Wang, and V.K. Varadan, Mechanical properties of carbon nanotube/polymer composites, Sci. Rep., 4(2014), art. No. 6479.
      [5]
      A.V. Radhamani, H.C. Lau, and S. Ramakrishna, CNT-reinforced metal and steel nanocomposites: A comprehensive assessment of progress and future directions, Composites Part A, 114(2018), p. 170. doi: 10.1016/j.compositesa.2018.08.010
      [6]
      L. Gao, L.Q. Jiang, and J. Sun, Carbon nanotube–ceramic composites, J. Electroceram., 17(2006), p. 51. doi: 10.1007/s10832-006-9935-8
      [7]
      M. Ahmadi, R. Ansari, and H. Rouhi, Multi-scale bending, buckling and vibration analyses of carbon fiber/carbon nanotube-reinforced polymer nanocomposite plates with various shapes, Physica E, 93(2017), p. 17. doi: 10.1016/j.physe.2017.05.009
      [8]
      N. Larianovsky, V. Popov, A. Katz-Demyanetz, A. Fleisher, D.E. Meyers, and R.S. Chaudhuri, Production of Al metal matrix composites reinforced with carbon nanotubes by two-stage melt-based HPDC-CE method, J. Eng. Mater. Technol., 141(2019), No. 1, p. 011002. doi: 10.1115/1.4040556
      [9]
      M. Shahid and M. Mansoor, Induction melting as a fabrication route for aluminum–carbon nanotubes nanocomposite, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 10(2016), No. 6, p. 682.
      [10]
      L.Z. Wang, Y. Liu, J.J. Wu, and X. Zhang, Mechanical properties and friction behaviors of CNT/AlSi10Mg composites produced by spark plasma sintering, Int. J. Miner. Metall. Mater., 24(2017), No. 5, p. 584. doi: 10.1007/s12613-017-1440-3
      [11]
      S.R. Bakshi, D. Lahiri, and A. Agarwal, Carbon nanotube reinforced metal matrix composites—A review, Int. Mater. Rev., 55(2010), No. 1, p. 41. doi: 10.1179/095066009X12572530170543
      [12]
      M.R. Morovvati and B. Mollaei-Dariani, The formability investigation of CNT-reinforced aluminum nano-composite sheets manufactured by accumulative roll bonding, Int. J. Adv. Manuf. Technol., 95(2018), p. 3523. doi: 10.1007/s00170-017-1205-1
      [13]
      Q. Cao, S.J. Han, G.S. Tulevski, Y. Zhu, D.D. Lu, and W. Haensch, Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics, Nat. Nanotechnol., 8(2013), No. 3, p. 180. doi: 10.1038/nnano.2012.257
      [14]
      T.H. Nam, K. Goto, K. Oshima, E.V.A. Premalal, Y. Shimamura, Y. Inoue, K. Naito, and S. Ogihara, Mechanical property enhancement of aligned multi-walled carbon nanotube sheets and composites through press-drawing process, Adv. Compos. Mater., 25(2016), No. 1, p. 73. doi: 10.1080/09243046.2014.985419
      [15]
      A. Mikhalchan, T. Gspann, and A. Windle, Aligned carbon nanotube–epoxy composites: The effect of nanotube organization on strength, stiffness, and toughness, J. Mater. Sci., 51(2016), p. 10005. doi: 10.1007/s10853-016-0228-6
      [16]
      Z.C. Hou, L.Q. Xiong, Y.F. Liu, L. Zhu, and W.Z. Li, Preparation of super-aligned carbon nanotube-reinforced nickel-matrix laminar composites with excellent mechanical properties, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 133. doi: 10.1007/s12613-019-1717-9
      [17]
      K. Iakoubovskii, Techniques of aligning carbon nanotubes, Cent. Eur. J. Phys., 7(2009), No. 4, p. 645.
      [18]
      J.L. Cui, L.J. Yang, X.S. Mei, Y. Wang, W.J. Wang, B. Liu, and Z.J. Fan, Nanomanipulation of carbon nanotubes with the vector scanning mode of atomic force microscope, Integr. Ferroelectr., 163(2015), No. 1, p. 81. doi: 10.1080/10584587.2015.1041359
      [19]
      M.S. Scholz, B.W. Drinkwater, T.M. Llewellyn-Jones, and R.S. Trask, Counterpropagating wave acoustic particle manipulation device for the effective manufacture of composite materials, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 62(2015), No. 10, p. 1845. doi: 10.1109/TUFFC.2015.007116
      [20]
      M. Ohlin, Ultrasonic Fluid and Cell Manipulation [Dissertation], KTH Royal Institute of Technology, Stockholm, 2015.
      [21]
      M.S. Scholz, B.W. Drinkwater, and R.S. Trask, Ultrasonic assembly of short fiber reinforced composites, [in] 2014 IEEE International Ultrasonics Symposium, Chicago, 2014, p. 369.
      [22]
      F.G. Mitri, Theoretical calculation of the acoustic radiation force acting on elastic and viscoelastic cylinders placed in a plane standing or quasistanding wave field, Eur. Phys. J. B, 44(2005), p. 71. doi: 10.1140/epjb/e2005-00101-0
      [23]
      M.D. Haslam and B. Raeymaekers, Aligning carbon nanotubes using bulk acoustic waves to reinforce polymer composites, Composites Part B, 60(2014), p. 91. doi: 10.1016/j.compositesb.2013.12.027
      [24]
      Y.F. Wu, G.Y. Kim, and A.M. Russell, Effects of mechanical alloying on an Al6061–CNT composite fabricated by semi-solid powder processing, Mater. Sci. Eng. A, 538(2012), p. 164. doi: 10.1016/j.msea.2012.01.025
      [25]
      H.P. Li, J.W. Fan, J.L. Kang, N.Q. Zhao, X.X. Wang, and B.E. Li, In-situ homogeneous synthesis of carbon nanotubes on aluminum matrix and properties of their composites, Trans. Nonferrous Met. Soc. China, 24(2014), No. 7, p. 2331. doi: 10.1016/S1003-6326(14)63353-7
      [26]
      M. Ahmadi, R. Ansari, and M.K. Hassanzadeh-Aghdam, Micromechanical analysis of elastic modulus of carbon nanotube–aluminum nanocomposites with random microstructures, J. Alloys Compd., 779(2019), p. 433. doi: 10.1016/j.jallcom.2018.11.326
      [27]
      C.R. Bradbury, J.K. Gomon, L. Kollo, H. Kwon, and M. Leparoux, Hardness of multi wall carbon nanotubes reinforced aluminum matrix composites, J. Alloys Compd., 585(2014), p. 362. doi: 10.1016/j.jallcom.2013.09.142
      [28]
      R. Pérez-Bustamante, C.D. Gómez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jiménez, S.A. Pérez-García, and R. Martínez-Sánchez, Microstructural and mechanical characterization of Al–MWCNT composites produced by mechanical milling, Mater. Sci. Eng. A, 502(2009), No. 1-2, p. 159. doi: 10.1016/j.msea.2008.10.047
      [29]
      M. Ahmadi, R. Ansari, and S. Rouhi, Finite element investigation of temperature dependence of elastic properties of carbon nanotube reinforced polypropylene, Eur. Phys. J. Appl. Phys., 80(2017), No. 3, art. No. 30401.
      [30]
      G. Yamamoto, K. Shirasu, T. Hashida, T. Takagi, J.W. Suk, J. An, R.D. Piner, and R.S. Ruoff, Nanotube fracture during the failure of carbon nanotube/alumina composites, Carbon, 49(2011), No. 12, p. 3709. doi: 10.1016/j.carbon.2011.04.022

    Catalog


    • /

      返回文章
      返回