留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 11
Nov.  2020

图(17)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  3118
  • HTML全文浏览量:  572
  • PDF下载量:  92
  • 被引次数: 0
Xiao-qian Pan, Jian Yang, Joohyun Park, and Hideki Ono, Distribution characteristics of inclusions along with the surface sliver defect on the exposed panel of automobile: A quantitative electrolysis method, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1489-1498. https://doi.org/10.1007/s12613-020-1973-8
Cite this article as:
Xiao-qian Pan, Jian Yang, Joohyun Park, and Hideki Ono, Distribution characteristics of inclusions along with the surface sliver defect on the exposed panel of automobile: A quantitative electrolysis method, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1489-1498. https://doi.org/10.1007/s12613-020-1973-8
引用本文 PDF XML SpringerLink
研究论文

汽车暴露面板带有表面条状缺陷的夹杂物分布特征分析:一种定量电解方法

  • Research Article

    Distribution characteristics of inclusions along with the surface sliver defect on the exposed panel of automobile: A quantitative electrolysis method

    + Author Affiliations
    • The specific distribution characteristics of inclusions along with the sliver defect were analyzed in detail to explain the formation mechanism of the sliver defect on the automobile exposed panel surface. A quantitative electrolysis method was used to compare and evaluate the three-dimensional morphology, size, composition, quantity, and distribution of inclusions in the defect and non-defect zone of automobile exposed panel. The Al2O3 inclusions were observed to be aggregated or chain-like shape along with the sliver defect of about 3–10 μm. The aggregation sections of the Al2O3 inclusions are distributed discretely along the rolling direction, with a spacing of 3–7 mm, a length of 6–7 mm, and a width of about 3 mm. The inclusion area part is 0.04%–0.16% with an average value of 0.08%, the inclusion number density is 40 mm−2 and the inclusion average spacing is 25.13 μm. The inclusion spacing is approximately 40–160 μm, with an average value of 68.76 μm in chain-like inclusion parts. The average area fraction and number density of inclusions in the non-defect region were reduced to about 0.002% and 1–2 mm−2, respectively, with the inclusion spacing of 400 μm and the size of Al2O3 being 1–3 μm.

    • loading
    • [1]
      M. Wang and Y.P. Bao, Source and negative effects of macro-inclusions in titanium stabilized ultra low carbon interstitial free (Ti-IF) steel, Met. Mater. Int., 18(2012), No. 1, p. 29. doi: 10.1007/s12540-012-0004-3
      [2]
      Q.Y. Zhang, L.T. Wang, and X.H. Wang, Influence of casting speed variation during unsteady continuous casting on non-metallic inclusions in IF steel slabs, ISIJ Int., 46(2006), No. 10, p. 1421. doi: 10.2355/isijinternational.46.1421
      [3]
      H. Esaka, Y. Kuroda, K. Shinozuka, and M. Tamura, Interaction between argon gas bubbles and solidified shell, ISIJ Int., 44(2004), No. 4, p. 682. doi: 10.2355/isijinternational.44.682
      [4]
      H. Yasunaka, R. Yamanka, T. Inoue, and T. Saito, Pinhole and inclusion defects formed at the subsurface in ultra low carbon steel, Tetsu-to-Hagané, 81(1995), No. 5, p. 529. doi: 10.2355/tetsutohagane1955.81.5_529
      [5]
      X.X. Deng, L.P. Li, X.H. Wang, Y.Q. Ji, C.X. Ji, and G.S. Zhu, Subsurface macro-inclusions and solidified hook character in aluminum-killed deep-drawing steel slabs, Int. J. Miner. Metall. Mater., 21(2014), No. 6, p. 531. doi: 10.1007/s12613-014-0939-0
      [6]
      H. Yamamura, Y. Mizukami, and K. Misawa, Formation of a solidified hook-like structure at the subsurface in ultra low carbon steel, ISIJ Int., 36(1996), No. Suppl, p. S223. doi: 10.2355/isijinternational.36.Suppl_S223
      [7]
      X.X. Deng, C.X. Ji, Y. Cui, Z.H. Tian, X. Yin, X.J. Shao, Y.D. Yang, and A. McLean, Formation and evolution of macro inclusions in IF steels during continuous casting, Ironmaking Steelmaking, 44(2017), No. 10, p. 739. doi: 10.1080/03019233.2017.1368958
      [8]
      J. Sengupta, B.G. Thomas, H.J. Shin, G.G. Lee, and S.H. Kim, A new mechanism of hook formation during continuous casting of ultra-low-carbon steel slabs, Metall. Mater. Trans. A, 37(2006), No. 5, p. 1597. doi: 10.1007/s11661-006-0103-1
      [9]
      G.G. Lee, H.J. Shin, S.H. Kim, S.K. Kim, W.Y. Choi, and B.G. Thomas, Prediction and control of subsurface hooks in continuous cast ultra-low-carbon steel slabs, Ironmaking Steelmaking, 36(2009), No. 1, p. 39. doi: 10.1179/174328108X369071
      [10]
      M. Zeze, A. Tanaka, and R. Tsujino, Formation mechanism of sliver-type surface defect with oxide scale on sheet and coil, Tetsu-to-Hagané, 87(2001), No. 2, p. 85. doi: 10.2355/tetsutohagane1955.87.2_85
      [11]
      T. Miyake, M. Morishita, H. Nakata, and M. Kokita, Influence of sulphur content and molten steel flow on entrapment of bubbles to solid/liquid interface, ISIJ Int., 46(2006), No. 12, p. 1817. doi: 10.2355/isijinternational.46.1817
      [12]
      H.X. Yu, C.X. Ji, B. Chen, C. Wang, and Y.H. Zhang, Characteristics and evolution of inclusion induced surface defects of cold rolled IF sheet, J. Iron Steel Res. Int., 22(2015), No. Supplement 1, p. 17.
      [13]
      S. Das, S. Roy, S. Nayak, T. Bhattacharyya, and S. Bhattacharyya, Case study−Analysis of grayish stick type sliver in cold rolled strips, Eng. Fail. Anal., 44(2014), p. 95. doi: 10.1016/j.engfailanal.2014.05.002
      [14]
      H. Cui, H.J. Wu, F. Yue, W.S. Wu, M. Wang, Y.P. Bao, B. Chen, and C.X. Ji, Surface defects of cold-rolled Ti-IF steel sheets due to non-metallic inclusions, J. Iron Steel Res. Int., 18(2011), Suppl. 2, p. 335.
      [15]
      C. Genzano, J. Madías, D. Dalmaso, J. Petroni, D. Biurrun, and G.D. Gresia, Elimination of surface defects in cold-rolled extra low carbon steel sheet, [in] the ISS 85th Steelmaking Conference, Nashville, 2002, p. 325.
      [16]
      P. Záhumenský and M. Merwin, Evolution of artificial defects from slab to rolled products, J. Mater. Process. Technol., 196(2008), No. 1-3, p. 266. doi: 10.1016/j.jmatprotec.2007.05.045
      [17]
      H. Utsunomiya, K. Hara, R. Matsumoto, and A. Azushima, Formation mechanism of surface scale defects in hot rolling process, CIRP Ann., 63(2014), No. 1, p. 261. doi: 10.1016/j.cirp.2014.03.022
      [18]
      S. Moir and J. Preston, Surface defects—evolution and behaviour from cast slab to coated strip, J. Mater. Process. Technol., 125-126(2002), p. 720. doi: 10.1016/S0924-0136(02)00318-7
      [19]
      R. Inoue, K. Kiyokawa, K. Tomoda, S. Ueda, and T. Ariyama, Three dimensional estimation of multi-component inclusion particle in steel, Metall. Anal., 32(2012), No. 8, p. 1.
      [20]
      D. Janis, R. Inoue, A. Karasev, and P.G. Jönsson, Application of different extraction methods for investigation of nonmetallic inclusions and clusters in steels and alloys, Adv. Mater. Sci. Eng., 2014(2014), art. No. 210486.
      [21]
      Y.P. Bao, M. Wang, and W. Jiang, A method for observing the three-dimensional morphologies of inclusions in steel, Int. J. Miner. Metall. Mater., 19(2012), No. 2, p. 111. doi: 10.1007/s12613-012-0524-3
      [22]
      X.W. Zhang, L.F. Zhang, W. Yang, Y. Wang, Y. Liu, and Y.C. Dong, Characterization of the three-dimensional morphology and formation mechanism of inclusions in linepipe steels, Metall. Mater. Trans. B, 48(2017), No. 1, p. 701. doi: 10.1007/s11663-016-0833-4
      [23]
      J. Guo, S.S. Cheng, H.J. Guo, and Y.G. Mei, Determination of non-metallic inclusions in a continuous casting slab of ultra-low carbon interstitial free steel by applying of metallographic method, electrolytic method and RTO technique, Sci. Rep., 9(2019), art. No. 2929. doi: 10.1038/s41598-018-36766-6
      [24]
      R. Inoue, S. Ueda, T. Ariyama, and H. Suito, Extraction of nonmetallic inclusion particles containing MgO from steel, ISIJ Int., 51(2011), No. 12, p. 2050. doi: 10.2355/isijinternational.51.2050
      [25]
      R. Inoue, R. Kimura, S. Ueda, and H. Suito, Applicability of nonaqueous electrolytes for electrolytic extraction of inclusion particles containing Zr, Ti, and Ce, ISIJ Int., 53(2013), No. 11, p. 1906. doi: 10.2355/isijinternational.53.1906
      [26]
      R. Diederichs and W. Bleck, Modelling of manganese sulphide formation during solidification, part I: Description of MnS formation parameters, Steel Res. Int., 77(2006), No. 3, p. 202. doi: 10.1002/srin.200606375
      [27]
      R. Diederichs, R. Bülte, G. Pariser, and W. Bleck, Modelling of manganese sulphide formation during solidification, Part II: Correlation of solidification and MnS formation, Steel Res. Int., 77(2006), No. 4, p. 256. doi: 10.1002/srin.200606383
      [28]
      Q.C. Peng, J.L. Yang, S. Peng, X.H. Zhang, S.P. Tang, and Y.S. Tian, Analysis of linear defects of cold-rolled galvanized sheet, Adv. Mater. Res., 652-654(2013), p. 2034. doi: 10.4028/www.scientific.net/AMR.652-654.2034

    Catalog


    • /

      返回文章
      返回