留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 5
May  2020

图(8)  / 表(7)

数据统计

分享

计量
  • 文章访问数:  1439
  • HTML全文浏览量:  446
  • PDF下载量:  47
  • 被引次数: 0
Lei-zhen Peng, Zhou-hua Jiang, and Xin Geng, Reaction mechanisms between molten CaF2-based slags and molten 9CrMoCoB steel, Int. J. Miner. Metall. Mater., 27(2020), No. 5, pp. 611-619. https://doi.org/10.1007/s12613-020-1976-5
Cite this article as:
Lei-zhen Peng, Zhou-hua Jiang, and Xin Geng, Reaction mechanisms between molten CaF2-based slags and molten 9CrMoCoB steel, Int. J. Miner. Metall. Mater., 27(2020), No. 5, pp. 611-619. https://doi.org/10.1007/s12613-020-1976-5
引用本文 PDF XML SpringerLink
研究论文

CaF2基熔渣与9CrMoCoB钢熔渣的反应机理

  • Research Article

    Reaction mechanisms between molten CaF2-based slags and molten 9CrMoCoB steel

    + Author Affiliations
    • Investigating the reaction mechanism between slag and 9CrMoCoB steel is important to develop the proper slag and produce qualified ingots in the electroslag remelting (ESR) process. Equilibrium reaction experiments between molten 9CrMoCoB steel and the slags of 55wt%CaF2–20wt%CaO–3wt%MgO–22wt%Al2O3xwt%B2O3 (x = 0.0, 0.5, 1.0, 1.5, 2.0, 3.0) were conducted. The reaction mechanisms between molten 9CrMoCoB steel and the slags with different B2O3 contents were deduced based on the composition of the steel and slag samples at different reaction times. Results show that B content in the steel can be controlled within the target range when the B2O3 content is 0.5wt% and the FeO content ranges from 0.18wt% to 0.22wt% in the slag. When the B2O3 content is ≥1wt%, the reaction between Si and B2O3 leads to the increase of the B content of steel. The additions of SiO2 and B2O3 to the slag should accord to the mass ratio of [B]/[Si] in the electrode, and SiO2 addition inhibits the reaction between Si and Al2O3.

    • loading
    • [1]
      Y.P. Yang, L.G. Wang, C.Q. Dong, G. Xu, T. Morosuk, and G. Tsatsaronis, Comprehensive exergy-based evaluation and parametric study of a coal-fired ultra-supercritical power plant, Appl. Energy, 112(2013), p. 1087. doi: 10.1016/j.apenergy.2012.12.063
      [2]
      J.P. Ciferno, T.E. Fout, A.P. Jones, and J.T. Murphy, Capturing carbon from existing coal-fired power plants, Chem. Eng. Prog., 105(2009), No. 4, p. 33.
      [3]
      Y.P. Zeng, J.D. Jia, W.H. Cai, S.Q. Dong, and Z.C. Wang, Effect of long-term service on the precipitates in P92 steel, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 913. doi: 10.1007/s12613-018-1640-5
      [4]
      F. Abe, T. Horiuchi, M. Taneike, and K. Sawada, Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature, Mater. Sci. Eng. A, 378(2004), No. 1-2, p. 299. doi: 10.1016/j.msea.2003.11.073
      [5]
      P.J. Maziasz, Developing an austenitic stainless steel for improved performance in advanced fossil power facilities, JOM, 41(1989), No. 7, p. 14. doi: 10.1007/BF03220265
      [6]
      N. Blaes, B. Donth, and D. Bokelmann, High chromium steel forgings for steam turbines at elevated temperatures, Energy Mater., 2(2007), No. 4, p. 207. doi: 10.1179/174892408X382879
      [7]
      H. Chalmers and J. Gibbins, Initial evaluation of the impact of post-combustion capture of carbon dioxide on supercritical pulverised coal power plant part load performance, Fuel, 86(2007), No. 14, p. 2109. doi: 10.1016/j.fuel.2007.01.028
      [8]
      R. Viswanathan and W. Bakker, Materials for ultra-supercritical coal power plants—Turbine materials: Part II, J. Mater. Eng. Perform., 10(2001), No. 1, p. 96. doi: 10.1361/105994901770345402
      [9]
      V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V. Schmitt, S. Hans, and H. Poisson, A comprehensive model of the electroslag remelting process: description and validation, Metall. Mater. Trans. B, 40(2009), No. 3, p. 271. doi: 10.1007/s11663-008-9208-9
      [10]
      Y.W. Dong, Z.H. Jiang, H. Liu, R. Chen, and Z.W. Song, Simulation of multi-electrode ESR process for manufacturing large ingot, ISIJ Int., 52(2012), No. 12, p. 2226. doi: 10.2355/isijinternational.52.2226
      [11]
      S.S. Kasana and O.P. Pandey, Effect of electroslag remelting and homogenization on hydrogen flaking in AMS-4340 ultra-high-strength steels, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 611. doi: 10.1007/s12613-019-1769-x
      [12]
      E. Plöckinger, Electroslag remelting—A modern tool in metallurgy, [in] P. Beeley, ed., The Hatfield Memorial Lectures, vol. 3, Woodhead Publishing Limited, Cambridge, 2005, p. 45.
      [13]
      J.A. Van Den Avyle, J.A. Brooks, and A.C. Powell, Reducing defects in remelting processes for high-performance alloys, JOM, 50(1998), No. 3, p. 22. doi: 10.1007/s11837-998-0374-7
      [14]
      S.J. Li, G.G. Cheng, Z.Q. Miao, L. Chen, and X.Y. Jiang, Effect of slag on oxide inclusions in carburized bearing steel during industrial electroslag remelting, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 291. doi: 10.1007/s12613-019-1737-5
      [15]
      V. Knežević, J. Balun, G. Sauthoff, G. Inden, and A. Schneider, Design of martensitic/ferritic heat-resistant steels for application at 650°C with supporting thermodynamic modelling, Mater. Sci. Eng. A, 477(2008), No. 1-2, p. 334. doi: 10.1016/j.msea.2007.05.047
      [16]
      F. Masuyama, History of power plants and progress in heat resistant steels, ISIJ Int., 41(2001), No. 6, p. 612. doi: 10.2355/isijinternational.41.612
      [17]
      T. Ishitsuka, Y. Inoue, and H. Ogawa, Effect of silicon on the steam oxidation resistance of a 9% Cr heat resistant steel, Oxid. Met., 61(2004), No. 1-2, p. 125.
      [18]
      A. Mitchell, F. Reyes-Carmona, and E. Samuelsson, The deoxidation of low-alloy steel ingots during ESR, Trans. Iron Steel Inst. Jpn., 24(1984), No. 7, p. 547. doi: 10.2355/isijinternational1966.24.547
      [19]
      F. Reyes-Carmona and A. Mitchell, Deoxidation of ESR slags, ISIJ Int., 32(1992), No. 4, p. 529. doi: 10.2355/isijinternational.32.529
      [20]
      G. Pateisky, H. Biele, and H.J. Fleischer, The reactions of titanium and silicon with Al2O3–CaO–CaF2 slags in the ESR process, J. Vac. Sci. Technol., 9(1972), No. 6, p. 1318. doi: 10.1116/1.1317029
      [21]
      S.F. Medina and A. Cores, Thermodynamic aspects in the manufacturing of micro-alloyed steels by the electroslag remelting process, ISIJ Int., 33(1993), No. 12, p. 1244. doi: 10.2355/isijinternational.33.1244
      [22]
      J. Fedko and M. Krucinski, Thermodynamic analysis of boron concentration changes in steel during electroslag remelting, Ironmaking Steelmaking, 16(1989), No. 2, p. 116.
      [23]
      D.S. Kim, G.J. Lee, M.B. Lee, J.I. Hur, and J.W. Lee, Manufacturing of 9CrMoCoB steel of large ingot with homogeneity by ESR process, IOP Conf. Ser.: Mater. Sci. Eng., 143(2016), art. No. 012002.
      [24]
      V.A. Grigorân, L.N. Belânčikov, and A.Â. Stomahin, Theoretical Principles of Electric Steelmaking, Mir Publishers, Milpitas, 1983, p. 154.
      [25]
      Y.J. Liang, Y.C. Che, and X.X. Liu, Inorganic Thermodynamics Data Book, Northeast University Press, Shenyang, 1993, p. 216.
      [26]
      X.H. Huang, Principles of Iron and Steel Metallurgy, Metallurgical Industry Press, Beijing, 1990, p. 309.

    Catalog


    • /

      返回文章
      返回