留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 7
Jul.  2020

图(7)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  2014
  • HTML全文浏览量:  537
  • PDF下载量:  67
  • 被引次数: 0
P. Nithin Raj, P.K. Navaneethkrishnan, K. Sekar,  and M.A. Joseph, Comparative study of mechanical, corrosion and erosion−corrosion properties of cast hyper-duplex and super-duplex stainless steels, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 954-961. https://doi.org/10.1007/s12613-020-1984-5
Cite this article as:
P. Nithin Raj, P.K. Navaneethkrishnan, K. Sekar,  and M.A. Joseph, Comparative study of mechanical, corrosion and erosion−corrosion properties of cast hyper-duplex and super-duplex stainless steels, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 954-961. https://doi.org/10.1007/s12613-020-1984-5
引用本文 PDF XML SpringerLink
研究论文

铸造超双相和超双相不锈钢的力学、腐蚀和冲蚀性能对比

  • Research Article

    Comparative study of mechanical, corrosion and erosion−corrosion properties of cast hyper-duplex and super-duplex stainless steels

    + Author Affiliations
    • Duplex stainless steels (DSSs) used in subsea structures and desalination industries require high corrosion and erosion resistance as well as excellent mechanical properties. The newly introduced cast duplex grade ASTM A890 7A has a unique composition and is expected to have a much better resistance to corrosion and erosion compared with the super-duplex grades 5A and 6A. This work is a comparative study of the mechanical properties, corrosion, and erosion−corrosion resistance of super-duplex grades 5A and 6A and the hyper-duplex grade 7A. The three DSSs exhibited equiaxial austenite islands in the ferrite matrix and balanced phase ratios. The hardness of the grade 7A was nearly 15% higher than those of the super-duplex grades, which is attributed to the effect of the higher contents of W and Mn in 7A. The impact toughness of grade 7A was found to be lower than those of the super-duplex grades due to the carbide precipitation resulting from the partial substitution of Mo with W. The oxide layer strengthening effect of rare earth elements and the higher pitting resistance equivalent number (PREN) of grade 7A resulted in higher corrosion resistance. The harder and more passive grade 7A showed a 35% lower material loss during erosion−corrosion.

    • loading
    • [1]
      R.N. Gunn, Duplex Stainless Steels: Microstructure, Properties and Applications, Woodhead Publishing Ltd, Cambridge, 1997.
      [2]
      H.D. Solomon and T.M. Devine, Duplex stainless steels: A tale of two phases, [in] Proceedings of Conference on Duplex Stainless Steels, ASM, Metal Park, Ohio, 1983, p. 693.
      [3]
      E.E. Stansbury and R.A. Buchanan, Fundamentals of Electrochemical Corrosion, ASM International, Ohio, 2000.
      [4]
      N. Ebrahimi, M.H. Moayed, and A. Davoodi, Critical pitting temperature dependence of 2205 duplex stainless steel on dichromate ion concentration in chloride medium, Corros. Sci., 53(2011), No. 4, p. 1278. doi: 10.1016/j.corsci.2010.12.019
      [5]
      J.A. Platt, A. Guzman, A. Zuccari, D.W. Thornburg, B.F. Rhodes, Y. Oshida, and B.K. Moore, Corrosion behavior of 2205 duplex stainless steel, Am. J. Orthod. Dentofacial Orthop., 112(1997), No. 1, p. 69. doi: 10.1016/S0889-5406(97)70276-2
      [6]
      K.S. Siow, T.Y. Song, and J.H. Qiu, Pitting corrosion of duplex stainless steels, Anti-Corros. Methods Mater., 48(2001), No. 1, p. 31. doi: 10.1108/00035590110365309
      [7]
      C.T. Kwok, F.T. Cheng, and H.C. Man, Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3.5% NaCl solution, Mater. Sci. Eng. A, 290(2000), No. 1-2, p. 145. doi: 10.1016/S0921-5093(00)00899-6
      [8]
      K.C. Bendall, Long term experiences of the use of duplex stainless steel to combat corrosion in the pulp and paper industry, [in] NACE-International Corrosion Conference Series, Corrosion 1996, Denver, 1996, paper No. 96469.
      [9]
      I. Olefjord, The passive state of stainless steels, Mater. Sci. Eng., 42(1980), p. 161. doi: 10.1016/0025-5416(80)90025-7
      [10]
      J.W. Oldfield, Test techniques for pitting and crevice corrosion resistance of stainless steels and nickel-base alloys in chloride-containing environments, Int. Mater. Rev., 32(1987), No. 1, p. 153. doi: 10.1179/095066087790150313
      [11]
      E.B. Haugan, M. Næss, C.T. Rodriguez, R. Johnsen, and M. Iannuzzi, Effect of tungsten on the pitting and crevice corrosion resistance of type 25Cr super duplex stainless steels, Corrosion, 73(2017), No. 1, p. 53. doi: 10.5006/2185
      [12]
      M. Bernås, I. Westermann, A. Jernberg, A.H. Qvale, R. Johnsen, C. Torres, and M. Iannuzzi, Effect of tungsten on the precipitation kinetics and localized corrosion resistance of super duplex stainless steels, [in] NACE-International Corrosion Conference Series, Corrosion 2018, Phoenix, Arizona, 2018, paper No. 11105.
      [13]
      J. Li, Y.L. Xu, X.S. Xiao, J.L. Zhao, L.Z. Jiang, and J.C. Hu, A new resource-saving, high manganese, and nitrogen super duplex stainless steel 25Cr−2Ni−3Mo−xMn−N, Mater. Sci. Eng. A, 527(2009), No. 1-2, p. 245. doi: 10.1016/j.msea.2009.07.065
      [14]
      J. Wang, P.J. Uggowitzer, R. Magdowski, and M.O. Speidel, Nickel-free duplex stainless steels, Scripta Mater., 40(1998), No. 1, p. 123. doi: 10.1016/S1359-6462(98)00396-0
      [15]
      A.P. Gulyayev, Effect of chromium and nickel on toughness of steel, Met. Sci. Heat Treat., 4(1962), p. 491. doi: 10.1007/BF00816733
      [16]
      H. Santos, J. Leal, and C. Sá, Nitrogen effect in microstructural parameters of a cast duplex stainless steel, Mater. Sci. Forum, 514-516(2006), p. 524. doi: 10.4028/www.scientific.net/MSF.514-516.524
      [17]
      P. Roberge, Corrosion Testing Made Easy: Erosion−Corrosion, NACE International, Houston, 2004.
      [18]
      N. Khayatan, H.M. Ghasemi, and M. Abedini, Synergistic erosion−corrosion behavior of commercially pure titanium at various impingement angles, Wear, 380-381(2017), p. 154. doi: 10.1016/j.wear.2017.03.016
      [19]
      Z.B. Zheng and Y.G. Zheng, Effects of surface treatments on the corrosion and erosion−corrosion of 304 stainless steel in 3.5% NaCl solution, Corros. Sci., 112(2016), p. 657. doi: 10.1016/j.corsci.2016.09.005
      [20]
      S. Zhuo, M.M. Stack, and R.C. Newman, Characterisation of synergistic effects between erosion and corrosion in an aqueous environment using electrochemical techniques, Corrosion, 52(1996), No. 12, p. 934. doi: 10.5006/1.3292087
      [21]
      E. Hussain and A. Husain, Erosion−corrosion of duplex stainless steel under Kuwait marine condition, Desalination, 183(2005), No. 1-3, p. 227. doi: 10.1016/j.desal.2005.02.051
      [22]
      J. Charles, Past, present and future of the duplex stainless steels, [in] Proceeding of International Conference and Expo on Duplex Stainless Steels, Grado, 2007.
      [23]
      ASTM International, ASTM A890/A890M–13: Standard Specification for Castings, Iron–Chromium–Nickel–Molybdenum Corrosion Resistant, Duplex (Austenitic/Ferritic) for General Application, ASTM International, West Conshohocken, 2013.
      [24]
      S.D. Bhole, J.B. Nemade, L. Collins, and C. Liu, Effect of nickel and molybdenum additions on weld metal toughness in a submerged arc welded HSLA line-pipe steel, J. Mater. Process. Technol., 173(2006), No. 1, p. 92. doi: 10.1016/j.jmatprotec.2005.10.028
      [25]
      E. Salama, M.M. Eissa, and A.S. Tageldin, Distinct properties of tungsten austenitic stainless alloy as a potential nuclear engineering material, Nucl. Eng. Technol., 51(2019), No. 3, p. 784. doi: 10.1016/j.net.2018.12.021
      [26]
      J.W. Zhao, T. Lee, J.H. Lee, Z.Y. Jiang, and C.S. Lee, Effects of tungsten addition on the microstructure and mechanical properties of microalloyed forging steels, Metall. Mater. Trans. A, 44(2013), No. 8, p. 3511. doi: 10.1007/s11661-013-1695-x
      [27]
      J.I. Suk, C.N. Park, S.H. Hong, and Y.G. Kim, Development and properties of tungsten-bearing stainless maraging steels, Mater. Sci. Eng. A, 138(1991), No. 2, p. 267. doi: 10.1016/0921-5093(91)90696-K
      [28]
      N.H. Heo and H.C. Lee, Effect of tungsten addition on the ductile−brittle−ductile transition in Fe−8Mn−7Ni−W maraging steels, Scripta Metall. Mater., 33(1995), No. 12, p. 2031. doi: 10.1016/0956-716X(95)00439-3
      [29]
      P.N. Raj, A.P. Sivan, K. Sekar, and M.A. Joseph, Effect of austenite reformation on localized corrosion resistance of hyper-duplex stainless steel in hot chloride solution, Int. J. Metalcast., 14(2020), p. 167. doi: 10.1007/s40962-019-00348-7
      [30]
      S.T. Kim, S.H. Jeon, I.S. Lee, and Y.S. Park, Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel − Part 1, Corros. Sci., 52(2010), No. 6, p. 1897. doi: 10.1016/j.corsci.2010.02.043
      [31]
      F. Pan, J. Zhang, H.L. Chen, Y.H. Su, C.L. Kuo, Y.H. Su, S.H. Chen, K.J. Lin, P.H. Hsieh, and W.S. Hwang, Effects of rare earth metals on steel microstructures, Materials, 9(2016), No. 6, p. 417. doi: 10.3390/ma9060417
      [32]
      H.J. Park and H.W. Lee, Effect of alloyed Mo and W on the corrosion characteristics of super duplex stainless steel weld, Int. J. Electrochem. Sci., 9(2014), No. 12, p. 6687.
      [33]
      A. Belfrouh, C. Masson, D. Vouagner, A.M. de Becdelievre, N.S. Prakash, and J.P. Audouard, The cumulative effect of alloying elements N, W, Mo and Cu on the corrosion behaviour of 17Cr−13Ni stainless steel in 2N H2SO4, Corros. Sci., 38(1996), No. 10, p. 1639. doi: 10.1016/S0010-938X(96)00033-9

    Catalog


    • /

      返回文章
      返回