留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 6
Jun.  2020

图(13)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  3830
  • HTML全文浏览量:  1344
  • PDF下载量:  274
  • 被引次数: 0
Jin-long Su, Jie Teng, Zi-li Xu,  and Yuan Li, Biodegradable magnesium-matrix composites: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 724-744. https://doi.org/10.1007/s12613-020-1987-2
Cite this article as:
Jin-long Su, Jie Teng, Zi-li Xu,  and Yuan Li, Biodegradable magnesium-matrix composites: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 724-744. https://doi.org/10.1007/s12613-020-1987-2
引用本文 PDF XML SpringerLink
特约综述

生物可降解镁基复合材料(BMMCs)

  • Invited Review

    Biodegradable magnesium-matrix composites: A review

    + Author Affiliations
    • Biodegradable magnesium alloys as new biomedical implant materials have been extensively studied because of their notable biodegradability over traditional bio-inert metals. However, the extreme degradation rate of pure magnesium leads to the loss of its mechanical integrity before the tissue recovers completely. The solutions to this challenge are as follows: (1) purification, (2) alloying, (3) surface modification, and (4) biodegradable magnesium-matrix composites (BMMCs) synthesis. Owing to the tunability of mechanical properties, the adjustability of degradation rate, and the improvement of biocompatibility, BMMCs reinforced with bioactive reinforcements have promising applications as a new generation of biomedical implants. In this review, the processing methods, Mg matrix, and reinforcement phases of BMMCs are discussed. Moreover, the review comprehensively discusses various BMMCs synthesized thus far, aiming to show the governing aspects of the achieved mechanical properties, corrosion behavior, and biocompatibility. Finally, this paper also discusses the research direction and further development areas for these materials.

    • loading
    • [1]
      Y. Liu, Y.F. Zheng, X.H. Chen, J.A. Yang, H.B. Pan, D.F. Chen, L.N. Wang, J.L. Zhang, D.H. Zhu, S.L. Wu, K.W.K. Yeung, R.C. Zeng, Y. Han, and S.K. Guan, Fundamental theory of biodegradable metals—Definition, criteria, and design, Adv. Funct. Mater., 29(2019), No. 18, art. No. 1805402.
      [2]
      A.D. Lantada, Handbook of Active Materials for Medical Devices: Advances and Applications, Pan Stanford Publishing, Singapore, 2011, p. 10.
      [3]
      M. Niinomi, Recent metallic materials for biomedical applications, Metall. Mater. Trans. A, 33(2002), No. 3, p. 477. doi: 10.1007/s11661-002-0109-2
      [4]
      G.L. Song, Control of biodegradation of biocompatable magnesium alloys, Corros. Sci., 49(2007), No. 4, p. 1696. doi: 10.1016/j.corsci.2007.01.001
      [5]
      M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 27(2006), No. 9, p. 1728. doi: 10.1016/j.biomaterials.2005.10.003
      [6]
      F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, and F. Feyerabend, Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid State Mater. Sci, 12(2008), No. 5-6, p. 63. doi: 10.1016/j.cossms.2009.04.001
      [7]
      A.H. Yusop, A.A. Bakir, N.A. Shaharom, M.R. Abdul Kadir, and H. Hermawan, Porous biodegradable metals for hard tissue scaffolds: A review, Int. J. Biomater., 2012(2012), No. 2012, art. No. 641430.
      [8]
      S. Nayak, B. Bhushan, R. Jayaganthan, P. Gopinath, R.D. Agarwal, and D. Lahiri, Strengthening of Mg based alloy through grain refinement for orthopaedic application, J. Mech. Behav. Biomed. Mater., 59(2016), p. 57. doi: 10.1016/j.jmbbm.2015.12.010
      [9]
      J. Vormann, Magnesium: Nutrition and metabolism, Mol. Aspects Med., 24(2003), No. 1-3, p. 27. doi: 10.1016/S0098-2997(02)00089-4
      [10]
      K. Kusnierczyk and M. Basista, Recent advances in research on magnesium alloys and magnesium–calcium phosphate composites as biodegradable implant materials, J. Biomater. Appl., 31(2017), No. 6, p. 878. doi: 10.1177/0885328216657271
      [11]
      Y.W. Yang, C.X. He, D.Y. E, W.J. Yang, F.W. Qi, D.Q. Xie, L.D. Shen, S.P. Peng, and C.J. Shuai, Mg bone implant: Features, developments and perspectives, Mater. Des., 185(2020), art No. 108259.
      [12]
      M. Shahin, K. Munir, C.E. Wen, and Y.C. Li, Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, Acta Biomater, 96(2019), p. 1. doi: 10.1016/j.actbio.2019.06.007
      [13]
      G.Y. Xiong, Y.J. Nie, D.H. Ji, J. Li, C.Z. Li, W. Li, Z. Yong, H.L. Luo, and Y.Z. Wan, Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering, Curr. Appl. Phys., 16(2016), No. 8, p. 830. doi: 10.1016/j.cap.2016.05.004
      [14]
      G.K. Meenashisundaram, M.H. Nai, A. Almajid, and M. Gupta, Development of high performance Mg–TiO2 nanocomposites targeting for biomedical/structural applications, Mater. Des., 65(2015), p. 104. doi: 10.1016/j.matdes.2014.08.041
      [15]
      M. Gupta, M.O. Lai, and C.Y. Soo, Effect of type of processing on the microstructural features and mechanical properties of Al–Cu/SiC metal matrix composites, Mater. Sci. Eng. A, 210(1996), No. 1-2, p. 114. doi: 10.1016/0921-5093(95)10077-6
      [16]
      X. Wang, L.H. Dong, J.T. Li, X.L. Li, X.L. Ma, and Y.F. Zheng, Microstructure, mechanical property and corrosion behavior of interpenetrating (HA+β-TCP)/MgCa composite fabricated by suction casting, Mater. Sci. Eng. C, 33(2013), No. 7, p. 4266. doi: 10.1016/j.msec.2013.06.018
      [17]
      S. Dutta, K.B. Devi, S. Mandal, A. Mahato, S. Gupta, B. Kundu, V.K. Balla, and M. Roy, In vitro corrosion and cytocompatibility studies of hot press sintered magnesium-bioactive glass composite, Materialia, 5(2019), art. No. 100245.
      [18]
      E. Ghasali, A. Bordbar-Khiabani, M. Alizadeh, M. Mozafari, M. Niazmand, H. Kazemzadeh, and T. Ebadzadeh, Corrosion behavior and in-vitro bioactivity of porous Mg/Al2O3 and Mg/Si3N4 metal matrix composites fabricated using microwave sintering process, Mater. Chem. Phys., 225(2019), p. 331. doi: 10.1016/j.matchemphys.2019.01.007
      [19]
      Z.Q. Cui, Y.K. Zhang, Y.L. Cheng, D.Q. Gong, and W.X. Wang, Microstructure, mechanical, corrosion properties and cytotoxicity of beta calcium polyphosphate reinforced ZK61 magnesium alloy composite by spark plasma sintering, Mater. Sci. Eng. C, 99(2019), p. 1035. doi: 10.1016/j.msec.2019.02.050
      [20]
      W. Zhang, L.L. Tan, D.R. Ni, J.X. Chen, Y.C. Zhao, L. Liu, C.J. Shuai, K. Yang, A. Atrens, and M.C. Zhao, Effect of grain refinement and crystallographic texture produced by friction stir processing on the biodegradation behavior of a Mg–Nd–Zn alloy, J. Mater. Sci. Technol., 35(2019), No. 5, p. 777. doi: 10.1016/j.jmst.2018.11.025
      [21]
      T. Lei, W. Tang, S.H. Cai, F.F. Feng, and N.F. Li, On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction, Corros. Sci., 54(2012), p. 270. doi: 10.1016/j.corsci.2011.09.027
      [22]
      W.Y. Jiang, J.F. Wang, W.Z. Yu, Y. Ma, and S.F. Guo, In-situ formation of a gradient Mg2Si/Mg composite with good biocompatibility, Surf. Coat. Technol., 361(2019), p. 255. doi: 10.1016/j.surfcoat.2018.12.107
      [23]
      R. Xu, M.C. Zhao, Y.C. Zhao, L. Liu, C. Liu, C.D. Gao, C.J. Shuai, and A. Atrens, Improved biodegradation resistance by grain refinement of novel antibacterial ZK30–Cu alloys produced via selective laser melting, Mater. Lett., 237(2019), p. 253. doi: 10.1016/j.matlet.2018.11.071
      [24]
      C.J. Shuai, L. Liu, M.C. Zhao, P. Feng, Y.W. Yang, W. Guo, C.D. Gao, and F.L. Yuan, Microstructure, biodegradation, antibacterial and mechanical properties of ZK60–Cu alloys prepared by selective laser melting technique, J. Mater. Sci. Technol., 34(2018), No. 10, p. 1944. doi: 10.1016/j.jmst.2018.02.006
      [25]
      C.J. Shuai, Y.Z. Zhou, Y.W. Yang, P. Feng, L. Liu, C.X. He, M.C. Zhao, S. Yang, C.D. Gao, and P. Wu, Biodegradation resistance and bioactivity of hydroxyapatite enhanced Mg–Zn composites via selective laser melting, Materials, 10(2017), No. 3, p. 307. doi: 10.3390/ma10030307
      [26]
      S.S. Abd El-Rahman, Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment), Pharmacol. Res., 47(2003), No. 3, p. 189. doi: 10.1016/S1043-6618(02)00336-5
      [27]
      K.T. Rim, K.H. Koo, and J.S. Park, Toxicological evaluations of rare earths and their health impacts to workers: A literature review, Saf. Health Work, 4(2013), No. 1, p. 12. doi: 10.5491/SHAW.2013.4.1.12
      [28]
      U.C. Gupta and S.C. Gupta, Sources and deficiency diseases of mineral nutrients in human health and nutrition: A review, Pedosphere, 24(2014), No. 1, p. 13. doi: 10.1016/S1002-0160(13)60077-6
      [29]
      E. Warensjö, L. Byberg, H. Melhus, R. Gedeborg, H. Mallmin, A. Wolk, and K. Michaelsson, Dietary calcium intake and risk of fracture and osteoporosis: Prospective longitudinal cohort study, BMJ, 342(2011), art. No. d1473.
      [30]
      Y.J. Ren, J.J. Huang, K. Yang, B.C. Zhang, Z.M. Yao, and H. Wang, Study of bio-corrosion of pure magnesium, Acta Metall. Sin., 41(2005), No. 11, p. 1228.
      [31]
      G.L. Makar and J. Kruger, Corrosion of magnesium, Int. Mater. Rev., 38(1993), No. 3, p. 138. doi: 10.1179/imr.1993.38.3.138
      [32]
      M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, Ohio, 1999, p. 30.
      [33]
      K.Y. Renkema, R.T. Alexander, R.J. Bindels, and J.G. Hoenderop, Calcium and phosphate homeostasis: concerted interplay of new regulators, Ann. Med., 40(2008), No. 2, p. 82. doi: 10.1080/07853890701689645
      [34]
      Z.J. Li, X.N. Gu, S.Q. Lou, and Y.F. Zheng, The development of binary Mg–Ca alloys for use as biodegradable materials within bone, Biomaterials, 29(2008), No. 10, p. 1329. doi: 10.1016/j.biomaterials.2007.12.021
      [35]
      H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, A. Ourdjini, M. Medraj, M. Daroonparvar, and E. Hamzah, Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys, Mater. Des., 53(2014), p. 283. doi: 10.1016/j.matdes.2013.06.055
      [36]
      A.V. Koltygin, V.E. Bazhenov, R.S. Khasenova, A.A. Komissarov, A.I. Bazlov, and V.A. Bautin, Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 858. doi: 10.1007/s12613-019-1801-1
      [37]
      S.H. Cai, T. Lei, N.F. Li, and F.F. Feng, Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys, Mater. Sci. Eng. C, 32(2012), No. 8, p. 2570. doi: 10.1016/j.msec.2012.07.042
      [38]
      Z.G. Huan, M.A. Leeflang, J. Zhou, L.E. Fratila-Apachitei, and J. Duszczyk, In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys, J. Mater. Sci. - Mater. Med., 21(2010), No. 9, p. 2623. doi: 10.1007/s10856-010-4111-8
      [39]
      E.L. Zhang, W.W. He, H. Du, and K. Yang, Microstructure, mechanical properties and corrosion properties of Mg–Zn–Y alloys with low Zn content, Mater. Sci. Eng. A, 488(2008), No. 1-2, p. 102. doi: 10.1016/j.msea.2007.10.056
      [40]
      Y. Sun, B.P. Zhang, Y. Wang, L. Geng, and X.H. Jiao, Preparation and characterization of a new biomedical Mg–Zn–Ca alloy, Mater. Des., 34(2012), p. 58. doi: 10.1016/j.matdes.2011.07.058
      [41]
      Y.Z. Ma, C.L. Yang, Y.J. Liu, F.S. Yuan, S.S. Liang, H.X. Li, and J.S. Zhang, Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg–xZn–0.2Ca alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1274. doi: 10.1007/s12613-019-1860-3
      [42]
      H.X. Li, S.K. Qin, Y.Z. Ma, J. Wang, Y.J. Liu, and J.S. Zhang, Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–Zn–Ca alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 800. doi: 10.1007/s12613-018-1628-1
      [43]
      G. Grass, C. Rensing, and M. Solioz, Metallic copper as an antimicrobial surface, Appl. Environ. Microbiol., 77(2011), No. 5, p. 1541. doi: 10.1128/AEM.02766-10
      [44]
      L. Ren, L. Xu, J.W. Feng, Y. Zhang, and K. Yang, In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis, J. Mater. Sci. - Mater. Med., 23(2012), No. 5, p. 1235. doi: 10.1007/s10856-012-4584-8
      [45]
      X.D. Yan, P. Wan, L.L. Tan, M.C. Zhao, and L. Qin, Corrosion and biological performance of biodegradable magnesium alloys mediated by low copper addition and processing, Mater. Sci. Eng. C, 93(2018), p. 565. doi: 10.1016/j.msec.2018.08.013
      [46]
      X.D. Yan, P. Wan, L.L. Tan, M.C. Zhao, C.J. Shuai, and K. Yang, Influence of hybrid extrusion and solution treatment on the microstructure and degradation behavior of Mg–0.1Cu alloy, Mater. Sci. Eng. B, 229(2018), p. 105. doi: 10.1016/j.mseb.2017.12.033
      [47]
      X.D. Yan, M.C. Zhao, Y. Yang, L.L. Tan, Y.C. Zhao, D.F. Yin, K. Yang, and A. Atrens, Improvement of biodegradable and antibacterial properties by solution treatment and micro-arc oxidation (MAO) of a magnesium alloy with a trace of copper, Corros. Sci., 156(2019), p. 125. doi: 10.1016/j.corsci.2019.05.015
      [48]
      J.A.T. Pennington, Silicon in foods and diets, Food Addit. Contam., 8(1991), No. 1, p. 97. doi: 10.1080/02652039109373959
      [49]
      X.N. Gu, Y.F. Zheng, Y. Cheng, S.P. Zhong, and T.F. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, 30(2009), No. 4, p. 484. doi: 10.1016/j.biomaterials.2008.10.021
      [50]
      G. Ben-Hamu, D. Eliezer, and K.S. Shin, The role of Mg2Si on the corrosion behavior of wrought Mg–Zn–Mn alloy, Intermetallics, 16(2008), No. 7, p. 860. doi: 10.1016/j.intermet.2008.03.003
      [51]
      A. Srinivasan, S. Ningshen, U. Kamachi Mudali, U.T.S. Pillai, and B.C. Pai, Influence of Si and Sb additions on the corrosion behavior of AZ91 magnesium alloy, Intermetallics, 15(2007), No. 12, p. 1511. doi: 10.1016/j.intermet.2007.05.012
      [52]
      P.J. Marie, P. Ammann, G. Boivin, and C. Rey, Mechanisms of action and therapeutic potential of strontium in bone, Calcif. Tissue Int., 69(2001), No. 3, p. 121. doi: 10.1007/s002230010055
      [53]
      S.G. Dahl, P. Allain, P.J. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, P.D. Delmas, and C. Christiansen, Incorporation and distribution of strontium in bone, Bone, 28(2001), No. 4, p. 446. doi: 10.1016/S8756-3282(01)00419-7
      [54]
      H.G. Seiler, H. Sigel, and A. Sigel, Handbook on Toxicity of Inorganic Compounds, Marcel Dekker, New York, 1988.
      [55]
      X.N. Gu, X.H. Xie, N.N. Li, Y.F. Zheng, and L. Qin, In vitro and in vivo studies on a Mg–Sr binary alloy system developed as a new kind of biodegradable metal, Acta Biomater., 8(2012), No. 6, p. 2360. doi: 10.1016/j.actbio.2012.02.018
      [56]
      M.C. Zhao, Y.C. Zhao, D.F. Yin, S. Wang, Y.M. Shangguan, C. Liu, L.L. Tan, C.J. Shuai, K. Yang, and A. Atrens, Biodegradation behavior of coated as-extruded Mg–Sr alloy in simulated body fluid, Acta Metall. Sin., 32(2019), No. 10, p. 1195. doi: 10.1007/s40195-019-00892-5
      [57]
      A.C. Hanzi, P. Gunde, M. Schinhammer, and P.J. Uggowitzer, On the biodegradation performance of an Mg–Y–RE alloy with various surface conditions in simulated body fluid, Acta Biomater., 5(2009), No. 1, p. 162. doi: 10.1016/j.actbio.2008.07.034
      [58]
      M. Carboneras, C.J. Múnez, P. Rodrigo, M.D. Escalera, M.D. López, and E. Otero, Effect of Heat Treatment on the Corrosion Behaviour of a Mg–Y Alloy in Chloride Medium, Mater. Sci. Forum, 636-637(2010), p. 491. doi: 10.4028/www.scientific.net/MSF.636-637.491
      [59]
      B. Zeller-Plumhoff, C. Malich, D. Kruger, G. Campbell, B. Wiese, S. Galli, A. Wennerberg, R. Willumeit-Römer, and D.C.F. Wieland, Analysis of the bone ultrastructure around biodegradable Mg–xGd implants using small angle X-ray scattering and X-ray diffraction, Acta Biomater., 101(2020), p. 637. doi: 10.1016/j.actbio.2019.11.030
      [60]
      H. Windhagen, K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, R. Schavan, C. Stukenborg-Colsman, and H. Waizy, Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study, Biomed. Eng. Online, 12(2013), No. 1, p. 62. doi: 10.1186/1475-925X-12-62
      [61]
      R. Biber, J. Pauser, M. Gesslein, and H.J. Bail, Magnesium-based absorbable metal screws for intra-articular fracture fixation, Case Rep. Orthop., 2016(2016), art. No. 9673174.
      [62]
      S. Pramanik, A.K. Agarwal, K.N. Rai, and A. Garg, Development of high strength hydroxyapatite by solid-state-sintering process, Ceram. Int., 33(2007), No. 3, p. 419. doi: 10.1016/j.ceramint.2005.10.025
      [63]
      F.C. Driessens, Probable phase composition of the mineral in bone, Z. Naturforsch. C Biosci., 35(1980), No. 5-6, p. 357. doi: 10.1515/znc-1980-5-601
      [64]
      S.H. Kwon, Y.K. Jun, S.H. Hong, and H.E. Kim, Synthesis and dissolution behavior of β-TCP and HA/β-TCP composite powders, J. Eur. Ceram. Soc., 23(2003), No. 7, p. 1039. doi: 10.1016/S0955-2219(02)00263-7
      [65]
      M.T. Fulmer, I.C. Ison, C.R. Hankermayer, B.R. Constantz, and J. Ross, Measurements of the solubilities and dissolution rates of several hydroxyapatites, Biomaterials, 23(2002), No. 3, p. 751. doi: 10.1016/S0142-9612(01)00180-6
      [66]
      J.T. Edwards, J.B. Brunski, and H.W. Higuchi, Mechanical and morphologic investigation of the tensile strength of a bone-hydroxyapatite interface, J. Biomed. Mater. Res., 36(1997), No. 4, p. 454. doi: 10.1002/(SICI)1097-4636(19970915)36:4<454::AID-JBM3>3.0.CO;2-D
      [67]
      W. Mróz, A. Bombalska, S. Burdyńska, M. Jedyński, A. Prokopiuk, B. Budner, A. Ślósarczyk, A. Zima, E. Menaszek, A. Ścisłowska-Czarnecka, and K. Niedzielski, Structural studies of magnesium doped hydroxyapatite coatings after osteoblast culture, J. Mol. Struct., 977(2010), No. 1-3, p. 145. doi: 10.1016/j.molstruc.2010.05.025
      [68]
      Z.Q. Cui, W.J. Li, L.X. Cheng, D.Q. Gong, W.L. Cheng, and W.X. Wang, Effect of nano-HA content on the mechanical properties, degradation and biocompatible behavior of Mg–Zn/HA composite prepared by spark plasma sintering, Mater. Charact., 151(2019), p. 620. doi: 10.1016/j.matchar.2019.03.048
      [69]
      D.B. Liu, G.Q. Xu, S.S. Jamali, Y. Zhao, M.F. Chen, and T. Jurak, Fabrication of biodegradable HA/Mg–Zn–Ca composites and the impact of heterogeneous microstructure on mechanical properties, in vitro degradation and cytocompatibility, Bioelectrochemistry, 129(2019), p. 106. doi: 10.1016/j.bioelechem.2019.05.001
      [70]
      G. Parande, V. Manakari, S. Prasadh, D. Chauhan, S. Rahate, R. Wong, and M. Gupta, Strength retention, corrosion control and biocompatibility of Mg–Zn–Si/HA nanocomposites, J. Mech. Behav. Biomed. Mater., 103(2020), art. No. 103584.
      [71]
      H.S. Ryu, H.J. Youn, K.S. Hong, B.S. Chang, C.K. Lee, and S.S. Chung, An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate, Biomaterials, 23(2002), No. 3, p. 909. doi: 10.1016/S0142-9612(01)00201-0
      [72]
      H.S. Ryu, K.S. Hong, J.K. Lee, D.J. Kim, J.H. Lee, B.S. Chang, D.H. Lee, C.K. Lee, and S.S. Chung, Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility, Biomaterials, 25(2004), No. 3, p. 393. doi: 10.1016/S0142-9612(03)00538-6
      [73]
      D.B. Liu, Y.B. Zuo, W.Y. Meng, M.F. Chen, and Z. Fan, Fabrication of biodegradable nano-sized β-TCP/Mg composite by a novel melt shearing technology, Mater. Sci. Eng. C, 32(2012), No. 5, p. 1253. doi: 10.1016/j.msec.2012.03.017
      [74]
      K. Yu, L.J. Chen, J. Zhao, S.J. Li, Y.L. Dai, Q. Huang, and Z.M. Yu, In vitro corrosion behavior and in vivo biodegradation of biomedical β-Ca3(PO4)2/Mg–Zn composites, Acta Biomater., 8(2012), No. 7, p. 2845. doi: 10.1016/j.actbio.2012.04.009
      [75]
      Q. Yuan, Y. Huang, D.B. Liu, and M.F. Chen, Effects of solidification cooling rate on the corrosion resistance of a biodegradable β-TCP/Mg–Zn–Ca composite, Bioelectrochemistry, 124(2018), p. 93. doi: 10.1016/j.bioelechem.2018.07.005
      [76]
      H.R. Zheng, Z. Li, C. You, D.B. Liu, and M.F. Chen, Effects of MgO modified β-TCP nanoparticles on the microstructure and properties of β-TCP/Mg–Zn–Zr composites, Bioact. Mater., 2(2017), No. 1, p. 1. doi: 10.1016/j.bioactmat.2016.12.004
      [77]
      Y. Zhang, J.N. Ai, D.G. Wang, Z.R. Hong, W.H. Li, and Y. Yokogawa, Dissolution properties of different compositions of biphasic calcium phosphate bimodal porous ceramics following immersion in simulated body fluid solution, Ceram. Int., 39(2013), No. 6, p. 6751. doi: 10.1016/j.ceramint.2013.02.004
      [78]
      S. Kannan, F. Goetz-Neunhoeffer, J. Neubauer, and J.M.F. Ferreira, Ionic substitutions in biphasic hydroxyapatite and β-tricalcium phosphate mixtures: structural analysis by rietveld refinement, J. Am. Ceram. Soc., 91(2007), No. 1, p. 1. doi: 10.1111/j.1551-2916.2007.02117.x
      [79]
      S.K. Ghosh, S.K. Nandi, B. Kundu, S. Datta, D.K. De, S.K. Roy, and D. Basu, In vivo response of porous hydroxyapatite and β-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds, J. Biomed. Mater. Res. Part B, 86B(2008), No. 1, p. 217. doi: 10.1002/jbm.b.31009
      [80]
      X.N. Gu, X. Wang, N. Li, L. Li, Y.F. Zheng, and X.G. Miao, Microstructure and characteristics of the metal-ceramic composite (MgCa–HA/TCP) fabricated by liquid metal infiltration, J. Biomed. Mater. Res. Part B, 99B(2011), No. 1, p. 127. doi: 10.1002/jbm.b.31879
      [81]
      X.G. Miao, D.M. Tan, J. Li, Y. Xiao, and R. Crawford, Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid), Acta Biomater., 4(2008), No. 3, p. 638. doi: 10.1016/j.actbio.2007.10.006
      [82]
      H.W. Kim, H.E. Kim, and J.C. Knowles, Fluor-hydroxyapatite sol–gel coating on titanium substrate for hard tissue implants, Biomaterials, 25(2004), No. 17, p. 3351. doi: 10.1016/j.biomaterials.2003.09.104
      [83]
      M.H. Fathi and E. Mohammadi Zahrani, Mechanical alloying synthesis and bioactivity evaluation of nanocrystalline fluoridated hydroxyapatite, J. Cryst. Growth, 311(2009), No. 5, p. 1392. doi: 10.1016/j.jcrysgro.2008.11.100
      [84]
      K. Cheng, W.J. Weng, H.B. Qu, P.Y. Du, G. Shen, G.R. Han, J. Yang, and J.M.F. Ferreira, Sol–gel preparation and in vitro test of fluorapatite/hydroxyapatite films, J. Biomed. Mater. Res. Part B, 69B(2004), No. 1, p. 33. doi: 10.1002/jbm.b.20027
      [85]
      E.C. Moreno, M. Kresak, and R.T. Zahradnik, Fluoridated hydroxyapatite solubility and caries formation, Nature, 247(1974), No. 5435, p. 64. doi: 10.1038/247064a0
      [86]
      H.W. Kim, Y.M. Kong, C.J. Bae, Y.J. Noh, and H.E. Kim, Sol–gel derived fluor-hydroxyapatite biocoatings on zirconia substrate, Biomaterials, 25(2004), No. 15, p. 2919. doi: 10.1016/j.biomaterials.2003.09.074
      [87]
      M. Razavi, M.H. Fathi, and M. Meratian, Bio-corrosion behavior of magnesium–fluorapatite nanocomposite for biomedical applications, Mater. Lett., 64(2010), No. 22, p. 2487. doi: 10.1016/j.matlet.2010.07.079
      [88]
      M. Razavi, M.H. Fathi, and M. Meratian, Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91–FA nanocomposites for biomedical applications, Mater. Sci. Eng. A, 527(2010), No. 26, p. 6938. doi: 10.1016/j.msea.2010.07.063
      [89]
      A.G. Dias, M.A. Lopes, I.R. Gibson, and J.D. Santos, In vitro degradation studies of calcium phosphate glass ceramics prepared by controlled crystallization, J. Non-Cryst. Solids, 330(2003), No. 1-3, p. 81. doi: 10.1016/j.jnoncrysol.2003.08.056
      [90]
      K. Qiu, C.X. Wan, C.S. Zhao, X. Chen, C.W. Tang, and Y.W. Chen, Fabrication and characterization of porous calcium polyphosphate scaffolds, J. Mater. Sci., 41(2006), No. 8, p. 2429. doi: 10.1007/s10853-006-5182-2
      [91]
      L.E. Jackson, B.M. Kariuki, M.E. Smith, J.E. Barralet, and A.J. Wright, Synthesis and structure of a calcium polyphosphate with a unique criss-cross arrangement of helical phosphate chains, Chem. Mater., 17(2005), No. 18, p. 4642. doi: 10.1021/cm050984x
      [92]
      Y.M. Lee, Y.J. Seol, Y.T. Lim, S. Kim, S.B. Han, I.C. Rhyu, S.H. Baek, S.J. Heo, J.Y. Choi, P.R. Klokkevold, and C.P. Chung, Tissue-engineered growth of bone by marrow cell transplantation using porous calcium metaphosphate matrices, J. Biomed. Mater. Res., 54(2001), No. 2, p. 216. doi: 10.1002/1097-4636(200102)54:2<216::AID-JBM8>3.0.CO;2-C
      [93]
      S.D. Waldman, M.D. Grynpas, R.M. Pilliar, and R.A. Kandel, Characterization of cartilagenous tissue formed on calcium polyphosphate substrates in vitro, J. Biomed. Mater. Res., 62(2002), No. 3, p. 323. doi: 10.1002/jbm.10235
      [94]
      M.D. Grynpas, R.M. Pilliar, R.A. Kandel, R. Renlund, M. Filiaggi, and M. Dumitriu, Porous calcium polyphosphate scaffolds for bone substitute applications in vivo studies, Biomaterials, 23(2002), No. 9, p. 2063. doi: 10.1016/S0142-9612(01)00336-2
      [95]
      K. Wang, F.P. Chen, C.S. Liu, and C. Rüssel, The effect of polymeric chain-like structure on the degradation and cellular biocompatibility of calcium polyphosphate, Mater. Sci. Eng. C, 28(2008), No. 8, p. 1572. doi: 10.1016/j.msec.2008.04.017
      [96]
      W. Song, M. Tian, F. Chen, Y.F. Tian, C.X. Wan, and X.X. Yu, The study on the degradation and mineralization mechanism of ion-doped calcium polyphosphate in vitro, J. Biomed. Mater. Res. Part B, 89B(2009), No. 2, p. 430. doi: 10.1002/jbm.b.31230
      [97]
      A.L. Feng and Y. Han, Mechanical and in vitro degradation behavior of ultrafine calcium polyphosphate reinforced magnesium-alloy composites, Mater. Des., 32(2011), No. 5, p. 2813. doi: 10.1016/j.matdes.2010.12.054
      [98]
      A. Pietak, P. Mahoney, G.J. Dias, and M.P. Staiger, Bone-like matrix formation on magnesium and magnesium alloys, J. Mater. Sci. - Mater. Med., 19(2008), No. 1, p. 407. doi: 10.1007/s10856-007-3172-9
      [99]
      L.S. Fei, C. Wang, Y. Xue, K.L. Lin, J. Chang, and J. Sun, Osteogenic differentiation of osteoblasts induced by calcium silicate and calcium silicate/beta-tricalcium phosphate composite bioceramics, J. Biomed. Mater. Res. Part B, 100B(2012), No. 5, p. 1237. doi: 10.1002/jbm.b.32688
      [100]
      A.M. Pietak, J.W. Reid, M.J. Stott, and M. Sayer, Silicon substitution in the calcium phosphate bioceramics, Biomaterials, 28(2007), No. 28, p. 4023. doi: 10.1016/j.biomaterials.2007.05.003
      [101]
      A.E. Porter, N. Patel, J.N. Skepper, S.M. Best, and W. Bonfield, Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics, Biomaterials, 24(2003), No. 25, p. 4609. doi: 10.1016/S0142-9612(03)00355-7
      [102]
      C.T. Kao, T.H. Huang, Y.J. Chen, C.J. Hung, C.C. Lin, and M.Y. Shie, Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement, Mater. Sci. Eng. C, 43(2014), p. 126. doi: 10.1016/j.msec.2014.06.030
      [103]
      S.F. Xu, K.L. Lin, Z. Wang, J. Chang, L. Wang, J.X. Lu, and C.Q. Ning, Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics, Biomaterials, 29(2008), No. 17, p. 2588. doi: 10.1016/j.biomaterials.2008.03.013
      [104]
      Z.G. Huan, C. Xu, B. Ma, J. Zhou, and J. Chang, Substantial enhancement of corrosion resistance and bioactivity of magnesium by incorporating calcium silicate particles, RSC Adv., 6(2016), No. 53, p. 47897. doi: 10.1039/C5RA27302A
      [105]
      C.T. Wu and J. Chang, Synthesis and in vitro bioactivity of bredigite powders, J. Biomater. Appl., 21(2007), No. 3, p. 251. doi: 10.1177/0885328206062360
      [106]
      D.L. Yi, C.T. Wu, B. Ma, H. Ji, X.B. Zheng, and J. Chang, Bioactive bredigite coating with improved bonding strength, rapid apatite mineralization and excellent cytocompatibility, J. Biomater. Appl., 28(2014), No. 9, p. 1343. doi: 10.1177/0885328213508165
      [107]
      C.T. Wu, J. Chang, J.Y. Wang, S.Y. Ni, and W.Y. Zhai, Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic, Biomaterials, 26(2005), No. 16, p. 2925. doi: 10.1016/j.biomaterials.2004.09.019
      [108]
      S.N. Dezfuli, Z.G. Huan, A. Mol, S. Leeflang, J. Chang, and J. Zhou, Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications, Mater. Sci. Eng. C, 79(2017), p. 647. doi: 10.1016/j.msec.2017.05.021
      [109]
      J. Schrooten and J.A. Helsen, Adhesion of bioactive glass coating to Ti6Al4V oral implant, Biomaterials, 21(2000), No. 14, p. 1461. doi: 10.1016/S0142-9612(00)00027-2
      [110]
      P. Sepulveda, J.R. Jones, and L.L. Hench, Bioactive sol–gel foams for tissue repair, J. Biomed. Mater. Res., 59(2002), No. 2, p. 340. doi: 10.1002/jbm.1250
      [111]
      M. Vogel, C. Voigt, U.M. Gross, and C.M. Müller-Mai, In vivo comparison of bioactive glass particles in rabbits, Biomaterials, 22(2001), No. 4, p. 357. doi: 10.1016/S0142-9612(00)00191-5
      [112]
      I.D. Xynos, A.J. Edgar, L.D.K. Buttery, L.L. Hench, and J.M. Polak, Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis, Biochem. Biophys. Res. Commun., 276(2000), No. 2, p. 461. doi: 10.1006/bbrc.2000.3503
      [113]
      Z.G. Huan, S. Leeflang, J. Zhou, W.Y. Zhai, J. Chang, and J. Duszczyk, In vitro degradation behavior and bioactivity of magnesium–Bioglass® composites for orthopedic applications, J. Biomed. Mater. Res. Part B, 100B(2012), No. 2, p. 437. doi: 10.1002/jbm.b.31968
      [114]
      T. Lei, C. Ouyang, W. Tang, L.F. Li, and L.S. Zhou, Enhanced corrosion protection of MgO coatings on magnesium alloy deposited by an anodic electrodeposition process, Corros. Sci., 52(2010), No. 10, p. 3504. doi: 10.1016/j.corsci.2010.06.028
      [115]
      D. Pereira, S. Cachinho, M.C. Ferro, and M.H.V. Fernandes, Surface behaviour of high MgO-containing glasses of the Si–Ca–P–Mg system in a synthetic physiological fluid, J. Eur. Ceram. Soc., 24(2004), No. 15-16, p. 3693. doi: 10.1016/j.jeurceramsoc.2004.02.006
      [116]
      R. Richards, W.F. Li, S. Decker, C. Davidson, O. Koper, V. Zaikovski, A. Volodin, T. Rieker, and K.J. Klabunde, Consolidation of metal oxide nanocrystals. Reactive pellets with controllable pore structure that represent a new family of porous, inorganic materials, J. Am. Chem. Soc., 122(2000), No. 20, p. 4921. doi: 10.1021/ja994383g
      [117]
      J. Fontanella, C. Andeen, and D. Schuele, Low-frequency dielectric constants of α-quartz, sapphire, MgF2, and MgO, J. Appl. Phys., 45(1974), No. 7, p. 2852. doi: 10.1063/1.1663690
      [118]
      C.S. Goh, M. Gupta, J. Wei, and L.C. Lee, Characterization of high performance Mg/MgO nanocomposites, J. Compos. Mater., 41(2007), No. 19, p. 2325. doi: 10.1177/0021998307075445
      [119]
      G.Y. Lin, D.D. Liu, M.F. Chen, C. You, Z. Li, Y. Wang, and W. Li, Preparation and characterization of biodegradable Mg–Zn–Ca/MgO nanocomposites for biomedical applications, Mater. Charact., 144(2018), p. 120. doi: 10.1016/j.matchar.2018.06.028
      [120]
      A.M. Schrand, J. Johnson, L.M. Dai, S.M. Hussain, J.J. Schlager, L. Zhu, Y.L. Hong, and E. Ōsawa, Cytotoxicity and genotoxicity of carbon nanomaterials, [in] T. Webster, ed., Safety of Nanoparticles, Springer, New York, 2009, p. 159.
      [121]
      J. Chłopek, B. Czajkowska, B. Szaraniec, E. Frackowiak, K. Szostak, and F. Béguin, In vitro studies of carbon nanotubes biocompatibility, Carbon, 44(2006), No. 6, p. 1106. doi: 10.1016/j.carbon.2005.11.022
      [122]
      G. Harikrishnan, T. Umasankar Patro, and D.V. Khakhar, Reticulated vitreous carbon from polyurethane foam–clay composites, Carbon, 45(2007), No. 3, p. 531. doi: 10.1016/j.carbon.2006.10.019
      [123]
      L.M. Barnes, G.J. Phillips, J.G. Davies, A.W. Lloyd, E. Cheek, S.R. Tennison, A.P. Rawlinson, O.P. Kozynchenko, and S.V. Mikhalovsky, The cytotoxicity of highly porous medical carbon adsorbents, Carbon, 47(2009), No. 8, p. 1887. doi: 10.1016/j.carbon.2009.01.047
      [124]
      X.F. Shi, B. Sitharaman, Q.P. Pham, F. Liang, K. Wu, and W. Edward Billups, L.J. Wilson, and A.G. Mikos, Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering, Biomaterials, 28(2007), No. 28, p. 4078. doi: 10.1016/j.biomaterials.2007.05.033
      [125]
      G. Turgut, A. Eksilioglu, N. Gencay, E. Gonen, N. Hekim, M.F. Yardim, D. Sakiz, and E. Ekinci, Pore structure engineering for carbon foams as possible bone implant material, J. Biomed. Mater. Res. Part A, 85A(2008), No. 3, p. 588. doi: 10.1002/jbm.a.31489
      [126]
      X. Wang, L.H. Dong, X.L. Ma, and Y.F. Zheng, Microstructure, mechanical property and corrosion behaviors of interpenetrating C/Mg–Zn–Mn composite fabricated by suction casting, Mater. Sci. Eng. C, 33(2013), No. 2, p. 618. doi: 10.1016/j.msec.2012.10.006
      [127]
      Q.W. Zhang, V.N. Mochalin, I. Neitzel, I.Y. Knoke, J.J. Han, C.A. Klug, J.G. Zhou, P.I. Lelkes, and Y. Gogotsi, Fluorescent PLLA-nanodiamond composites for bone tissue engineering, Biomaterials, 32(2011), No. 1, p. 87. doi: 10.1016/j.biomaterials.2010.08.090
      [128]
      A.M. Schrand, H.J. Huang, C. Carlson, J.J. Schlager, S.E. Omacr, S.M. Hussain, and L.M. Dai, Are diamond nanoparticles cytotoxic?, J. Phys. Chem. B, 111(2007), No. 1, p. 2. doi: 10.1021/jp066387v
      [129]
      A.M. Schrand, S.A.C. Hens, and O.A. Shenderova, Nanodiamond particles: properties and perspectives for bioapplications, Crit. Rev. Solid State Mater. Sci., 34(2009), No. 1-2, p. 18. doi: 10.1080/10408430902831987
      [130]
      Y. Yuan, X. Wang, G. Jia, J.H. Liu, T.C. Wang, Y.Q. Gu, S.T. Yang, S. Zhen, H.F. Wang, and Y.F. Liu, Pulmonary toxicity and translocation of nanodiamonds in mice, Diamond Relat. Mater., 19(2010), No. 4, p. 291. doi: 10.1016/j.diamond.2009.11.022
      [131]
      N. Mohan, C.S. Chen, H.H. Hsieh, Y.C. Wu, and H.C. Chang, In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans, Nano Lett., 10(2010), No. 9, p. 3692. doi: 10.1021/nl1021909
      [132]
      E.K. Chow, X.Q. Zhang, M. Chen, R. Lam, E. Robinson, H.J. Huang, D. Schaffer, E. Osawa, A. Goga, and D. Ho, Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment, Sci. Transl. Med., 3(2011), No. 73, art. No. 73ra21
      [133]
      L. Pramatarova, R. Dimitrova, E. Pecheva, T. Spassov, and M. Dimitrova, Peculiarities of hydroxyapatite/nanodiamond composites as novel implants, J. Phys. Conf. Ser., 93(2007), No. 1, art. No. 012049.
      [134]
      Q.W. Zhang, V.N. Mochalin, I. Neitzel, K. Hazeli, J.J. Niu, A. Kontsos, J.G. Zhou, P.I. Lelkes, and Y. Gogotsi, Mechanical properties and biomineralization of multifunctional nanodiamond–PLLA composites for bone tissue engineering, Biomaterials, 33(2012), No. 20, p. 5067. doi: 10.1016/j.biomaterials.2012.03.063
      [135]
      H.B. Gong, B. Anasori, C.R. Dennison, K. Wang, E. C. Kumbur, R. Strich, and J.G. Zhou, Fabrication, biodegradation behavior and cytotoxicity of Mg-nanodiamond composites for implant application, J. Mater. Sci. -Mater. Med., 26(2015), No. 2, art. No. 110.
      [136]
      W. Han, Z.N. Wu, Y. Li, and Y.Y. Wang, Graphene family nanomaterials (GFNs)—Promising materials for antimicrobial coating and film: A review, Chem. Eng. J., 358(2019), p. 1022. doi: 10.1016/j.cej.2018.10.106
      [137]
      A. Saberi, H.R. Bakhsheshi-Rad, E. Karamian, M. Kasiri-Asgarani, and H. Ghomi, Magnesium–graphene nano-platelet composites: Corrosion behavior, mechanical and biological properties, J. Alloys Compd., 821(2020), art. No. 153379.
      [138]
      J.X. Yang, G.L. Koons, G. Cheng, L.L. Zhao, A.G. Mikos, and F.Z. Cui, A review on the exploitation of biodegradable magnesium-based composites for medical applications, Biomed. Mater., 13(2018), No. 2, art No. 022001.
      [139]
      R.D. Campo, B. Savoini, A. Muñoz, M.A. Monge, and G. Garcés, Mechanical properties and corrosion behavior of Mg–HAP composites, J. Mech. Behav. Biomed. Mater., 39(2014), p. 238. doi: 10.1016/j.jmbbm.2014.07.014
      [140]
      G. Garcés, M. Rodríguez, P. Pérez, and P. Adeva, Effect of volume fraction and particle size on the microstructure and plastic deformation of Mg–Y2O3 composites, Mater. Sci. Eng. A, 419(2006), No. 1-2, p. 357. doi: 10.1016/j.msea.2006.01.026
      [141]
      K.A. Khalil, E.S.M. Sherif, and A.A. Almajid, Corrosion passivation in simulated body fluid of magnesium/hydroxyapatite nanocomposites sintered by high frequency induction heating, Int. J. Electrochem. Sci., 6(2011), No. 12, p. 6184.
      [142]
      X.N. Gu, W.R. Zhou, Y.F. Zheng, L.M. Dong, Y.L. Xi, and D.L. Chai, Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites, Mater. Sci. Eng. C, 30(2010), No. 6, p. 827. doi: 10.1016/j.msec.2010.03.016
      [143]
      Y.C. Su, D.Y. Lu, C.J. Lu, J.S. Lian, and G.Y. Li, Preparation and characterization of biodegradable hy-droxyapatite reinforced magnesium composites, Rare Met. Mater. Eng., 43(2014), No. s1, p. 29.
      [144]
      A.K. Khanra, H.C. Jung, K.S. Hong, and K.S. Shin, Comparative property study on extruded Mg–HAP and ZM61–HAP composites, Mater. Sci. Eng. A, 527(2010), No. 23, p. 6283. doi: 10.1016/j.msea.2010.06.031
      [145]
      A.K. Khanra, H.C. Jung, S.H. Yu, K.S. Hong, and K.S. Shin, Microstructure and mechanical properties of Mg–HAP composites, Bull. Mater. Sci., 33(2010), No. 1, p. 43. doi: 10.1007/s12034-010-0006-z
      [146]
      S.Z. Khalajabadi, M.R. Abdul Kadir, S. Izman, and R. Ebrahimi-Kahrizsangi, Fabrication, bio-corrosion behavior and mechanical properties of a Mg/HA/MgO nanocomposite for biomedical applications, Mater. Des., 88(2015), p. 1223. doi: 10.1016/j.matdes.2015.09.065
      [147]
      S. Jaiswal, R.M. Kumar, P. Gupta, M. Kumaraswamy, P. Roy, and D. Lahiri, Mechanical, corrosion and biocompatibility behaviour of Mg–3Zn–HA biodegradable composites for orthopaedic fixture accessories, J. Mech. Behav. Biomed. Mater., 78(2018), p. 442. doi: 10.1016/j.jmbbm.2017.11.030
      [148]
      S.Y. He, Y. Sun, M.F. Chen, D.B. Liu, and X.Y. Ye, Microstructure and properties of biodegradable β-TCP reinforced Mg–Zn–Zr composites, Trans. Nonferrous Met. Soc. China, 21(2011), No. 4, p. 814. doi: 10.1016/S1003-6326(11)60786-3
      [149]
      C. Prakash, S. Singh, K. Verma, S.S. Sidhu, and S. Singh, Synthesis and characterization of Mg–Zn–Mn–HA composite by spark plasma sintering process for orthopedic applications, Vacuum, 155(2018), p. 578. doi: 10.1016/j.vacuum.2018.06.063
      [150]
      Y. Huang, D.B. Liu, L. Anguilano, C. You, and M.F. Chen, Fabrication and characterization of a biodegradable Mg–2Zn–0.5Ca/1beta-TCP composite, Mater. Sci. Eng. C, 54(2015), p. 120. doi: 10.1016/j.msec.2015.05.035
      [151]
      M. Razavi, M.H. Fathi, and M. Meratian, Fabrication and characterization of magnesium–fluorapatite nanocomposite for biomedical applications, Mater. Charact., 61(2010), No. 12, p. 1363. doi: 10.1016/j.matchar.2010.09.008
      [152]
      B.R. Sunil, T.S.S. Kumar, U. Chakkingal, V. Nandakumar, and M. Doble, Friction stir processing of magnesium–nanohydroxyapatite composites with controlled in vitro degradation behavior, Mater. Sci. Eng. C, 39(2014), p. 315. doi: 10.1016/j.msec.2014.03.004
      [153]
      F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kaese, A. Pisch, F. Beckmann, and H. Windhagen, In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials, 27(2006), No. 7, p. 1013. doi: 10.1016/j.biomaterials.2005.07.037
      [154]
      A. Atrens, S. Johnston, Z.M. Shi, and M.S. Dargusch, Viewpoint-understanding Mg corrosion in the body for biodegradable medical implants, Scripta Mater., 154(2018), p. 92. doi: 10.1016/j.scriptamat.2018.05.021
      [155]
      C. Castellani, R.A. Lindtner, P. Hausbrandt, E. Tschegg, S.E. Stanzl-Tschegg, G. Zanoni, S. Beck, and A.M. Weinberg, Bone–implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control, Acta Biomater., 7(2011), No. 1, p. 432. doi: 10.1016/j.actbio.2010.08.020
      [156]
      H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, and M. Shakibaei, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants, J. Biomed. Mater. Res., 62(2002), No. 2, p. 175. doi: 10.1002/jbm.10270
      [157]
      S.K. Lu, H.I. Yeh, T.Y. Tian, and W.H. Lee, Degradation of magnesium alloys in biological solutions and reduced phenotypic expression of endothelial cell grown on these alloys, [in] F. Ibrahim, N.A.A. Osman, J. Usman and N.A. Kadri, eds., 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006, IFMBE Proceedings, Springer, Berlin, 15(2007), p. 98.
      [158]
      C.K. Seal, K. Vince, and M.A. Hodgson, Biodegradable surgical implants based on magnesium alloys—A review of current research, IOP Conf. Ser.: Mater. Sci. Eng., 4(2009), No. 1, art. No. 012011.

    Catalog


    • /

      返回文章
      返回