Cite this article as: |
Behrouz Bagheri, Mahmoud Abbasi, Amin Abdollahzadeh, and Amir Hossein Kokabi, A comparative study between friction stir processing and friction stir vibration processing to develop magnesium surface nanocomposites, Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1133-1146. https://doi.org/10.1007/s12613-020-1993-4 |
Friction stir processing (FSP) can be used to improve surface composites. In this study, a modified method of FSP called friction stir vibration processing (FSVP) was applied to develop a surface composite on AZ91 magnesium alloy. In this technique, the workpiece is vibrated normal to the processing direction. The results illustrated that compared with the FSP method, the FSVP caused a better homogeneous distribution of SiC particles in the microstructure. The results also showed that matrix grains of friction stir vibration processed (FSV-processed) samples ((26.43 ± 2.00) μm) were finer than those of friction stir processed (FS-processed) specimens ((39.43 ± 2.00) μm). The results indicated that the ultimate tensile strength (UTS) of FSV-processed specimens (361.82 MPa) was higher than that of FS-processed specimens (324.97 MPa). The higher plastic strain in the material during FSVP, due to workpiece vibration, resulted in higher dynamic recrystallization, and consequently, finer grains were developed. The elongation and formability index of the FSV-processed specimen (16.88% and 6107.52 MPa·%, respectively) were higher than those of the FS-processed sample (15.24% and 4952.54 MPa·%, respectively). Moreover, the effects of FSVP were also found to intensify as the vibration frequency increased.
[1] |
M. Abbasi, A. Abdollahzadeh, B. Bagheri, and H. Omidvar, The effect of SiC particle addition during FSW on microstructure and mechanical properties of AZ31 magnesium alloy, Int. J. Mater. Eng. Perform., 24(2015), No. 12, p. 5037. doi: 10.1007/s11665-015-1786-5
|
[2] |
A. Abdollahzadeh, A. Shokuhfar, H. Omidvar, J.M. Cabrera, A. Solonin, A. Ostovari, and M. Abbasi, Structural evaluation and mechanical properties of AZ31/SiC nano-composite produced by friction stir welding process at various welding speeds, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 233(2019), No. 5, p. 831.
|
[3] |
B.L. Mordike and T. Ebert T, Magnesium properties applications potential, Mater. Sci. Eng. A, 302(2001), p. 37. doi: 10.1016/S0921-5093(00)01351-4
|
[4] |
J. Goken, J. Bohlen, N. Hort, D. Letzig, and K.U. Kainer, New development in magnesium technology for light weight structures in transportation industries, Mater. Sci. Forum, 426-432(2003), p. 153. doi: 10.4028/www.scientific.net/MSF.426-432.153
|
[5] |
A. Abdollahzadeh, A. Shokuhfar, J.M. Cabrera, A.P. Zhilyaev, and H. Omidvar, In-situ nanocomposite in friction stir welding of 6061-T6 aluminum alloy to AZ31 magnesium alloy, J. Mater. Process. Technol., 263(2019), p. 296. doi: 10.1016/j.jmatprotec.2018.08.025
|
[6] |
A. Abdollahzadeh, A. Shokuhfar, J.M. Cabrera, A.P Zhilyaev, and H. Omidvar, The effect of changing chemical composition on dissimilar Mg/Al friction stir welded butt joints using zinc interlayer, J. Manuf. Processes, 34(2018), p. 18. doi: 10.1016/j.jmapro.2018.05.029
|
[7] |
B.B. Straumal, X. Sauvage, B. Baretzky, A.A. Mazilkin, and R.Z. Valiev, Grain boundary films in Al−Zn alloys after high pressure torsion, Scripta Mater., 70(2014), p. 59.
|
[8] |
A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta. Mater., 49(2001), No. 7, p. 1199. doi: 10.1016/S1359-6454(01)00020-9
|
[9] |
M.T. Pérez-Prado, J.A. del Valle, and O.A. Ruano, Grain refinement of Mg−Al−Zn alloys via accumulative roll bonding, Scripta Mater., 51(2004), No. 11, p. 1093. doi: 10.1016/j.scriptamat.2004.07.028
|
[10] |
M. Abbasi, A. Abdollahzadeh, H. Omidvar, B. Bagheri, and M. Rezaei, Incorporation of SiC particles in FS Welded zone of AZ31 Mg alloy to improve the mechanical properties and corrosion resistance, Int. J. Mater. Res., 107(2016), No. 6, p. 566. doi: 10.3139/146.111369
|
[11] |
P. Asadi, M.K. Besharati Givi, and G. Faraji, Producing ultrafine-grained AZ91 from as-cast AZ91 by FSP, Mater. Manuf. Processes, 25(2010), No. 11, p. 1219. doi: 10.1080/10426911003636936
|
[12] |
H.S. Arora, H. Singh, B.K. Dhindaw, and H.S. Grewal, Some investigations on friction stir processed zone of AZ91 alloy, Trans. Indian Inst. Met., 65(2012), No. 6, p. 735. doi: 10.1007/s12666-012-0219-5
|
[13] |
D. Ahmadkhaniha, M. Heydarzadeh Sohi, A. Salehi, and R. Tahavvori, Formations of AZ91/Al2O3 nano-composite layer by friction stir processing, J. Magnes. Alloys, 4(2016), No. 4, p. 314. doi: 10.1016/j.jma.2016.11.002
|
[14] |
A.H. Feng, B.L. Xiao, Z.Y. Ma, and R.S. Chen, Effect of friction stir processing procedures on microstructure and mechanical properties of Mg‒A‒Zn casting, Metall. Mater. Trans. A, 40(2009), No. 10, p. 2447. doi: 10.1007/s11661-009-9923-0
|
[15] |
P. Asadi, M.K. Besharati Givi, K. Abrinia, M. Taherishargh, and R. Salekrostam, Effects of SiC particle size and process parameters on the microstructure and hardness of AZ91/SiC composite layer fabricated by FSP, J. Mater. Eng. Perform., 20(2011), No. 9, p. 1554. doi: 10.1007/s11665-011-9855-x
|
[16] |
M. Abbasi, B. Bagheri, M. Dadaei, H. Omidvar, and M. Rezaei, The effect of FSP on mechanical, tribological, and corrosion behavior of composite layer developed on magnesium AZ91 alloy surface, Int. J. Adv. Manuf. Technol., 77(2015), No. 9-12, p. 2051. doi: 10.1007/s00170-014-6577-x
|
[17] |
M. Dadaei, H. Omidvar, B. Bagheri, M. Jahazi, and M. Abbasi, The effect of SiC/Al2O3 particles used during FSP on mechanical properties of AZ91 magnesium alloy, Int. J. Mater. Res., 105(2014), No. 4, p. 369. doi: 10.3139/146.111025
|
[18] |
H.R. Eftekharnia, A.A. Amadeh, A. Khodabandeh, and M. Paidar, Microstructure and wear behavior of AA6061/SiC surface composite fabricated via friction stir processing with different pins and passes, Rare Met., 39(2020), p. 429. doi: 10.1007/s12598-016-0691-x
|
[19] |
S.K. Kumar, Ultrasonic assisted friction stir processing of 6063 aluminum alloy, Arch. Civil Mech. Eng., 16(2016), No. 3, p. 473. doi: 10.1016/j.acme.2016.03.002
|
[20] |
F. Baradarani, A. Mostafapour, and M. Shalvandi, Enhanced corrosion behavior and mechanical properties of AZ91 magnesium alloy developed by ultrasonic-assisted friction stir processing, Mater. Corros., 71(2020), No. 1, p. 109. doi: 10.1002/maco.201911084
|
[21] |
R. Farshbaf Zinati, Development of a modified friction stir process for dispersion of multi-walled carbon nano-tube throughout nylon 6, Mod. Mech. Eng., 15(2015), No. 5, p. 269.
|
[22] |
B. Bagheri and M. Abbasi, Development of AZ91/SiC surface composite by FSP: Effect of vibration and process parameters on microstructure and mechanical characteristics, Adv. Manuf., 8(2020), No. 1, p. 82. doi: 10.1007/s40436-019-00288-9
|
[23] |
ASTM International, ASTM-E112-13: Standard Test Methods for Determining Average Grain Size, West Conshohocken, 2010.
|
[24] |
ASTM International, ASTM-E8M: Standard Test Methods of Tension Testing of Metallic Materials, American Soc. Test. Mater., West Conshohocken, Pennsylvania, 2003.
|
[25] |
M. Abbasi, B. Bagheri, and R. Keivani, Thermal analysis of friction stir welding process and investigation into affective parameters using simulation, J. Mech. Sci. Technol., 29(2015), No. 2, p. 861. doi: 10.1007/s12206-015-0149-3
|
[26] |
M. Paidar, O.O. Ojo, H.R. Ezatpour, and A. Heidarzadeh, Influence of multi-pass FSP on the microstructure, mechanical properties and tribological characterization of Al/B4C composite fabricated by accumulative roll bonding (ARB), Surf. Coat. Technol., 361(2019), p. 159. doi: 10.1016/j.surfcoat.2019.01.043
|
[27] |
B. Bagheri, M. Abbasi, A. Abdollahzadeh, and H. Omidvar, Advanced approach to modify friction stir spot welding process, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00416-x
|
[28] |
D. Hull and D.J. Bacon, Introduction to Dislocations, 5th ed., Butterworth-Heinemann, Britain, 2011.
|
[29] |
T.R. McNelley, S. Swaminathan, and J.Q. Su, Recrystallization mechanisms during friction stir welding/processing of aluminum alloys, Scripta Mater., 58(2008), No. 5, p. 349. doi: 10.1016/j.scriptamat.2007.09.064
|
[30] |
M. Abbasi, M. Givi, and B. Bagheri, Application of vibration to enhance efficiency of friction stir processing, Trans. Nonferrous Met. Soc. China, 29(2019), No. 7, p. 1393. doi: 10.1016/S1003-6326(19)65046-6
|
[31] |
C.I. Chang, C.J. Lee, and J.C. Huang, Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys, Scripta Mater., 51(2004), No. 6, p. 509. doi: 10.1016/j.scriptamat.2004.05.043
|
[32] |
W.D. Callister and D.G. Rethwisch, Materials Science and Engineering: An Introduction, Wiley, Utah, 2007.
|
[33] |
Y.S. Li, Y. Zhang, N.R. Tao, and K. Lu, Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation, Acta Mater., 57(2009), No. 3, p. 761. doi: 10.1016/j.actamat.2008.10.021
|
[34] |
M. Abbasi, M. Givi, and A. Ramazani, Friction stir vibration processing: A new method to improve the microstructure and mechanical properties of Al5052/SiC surface nano-composite layer, Int. J. Adv. Manuf. Technol., 100(2019), No. 5-8, p. 1463. doi: 10.1007/s00170-018-2783-2
|
[35] |
D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformation in Metals and Alloys, 3rd ed., CRC Press, New York, 2009, p. 156.
|
[36] |
G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, New York, 1988.
|
[37] |
M. Maghsoodi and Z. Yari, Effect of temperature on wet agglomeration of crystals, Iran J. Basic Med. Sci., 17(2014), No. 5, p. 344.
|
[38] |
M.N. Gajanan, S. Narendranath, and S.S. Satheesh Kumar, Effect of grain refinement on mechanical and corrosion behavior of AZ91 magnesium alloy processed by ECAE, IOP Conf. Ser. Mater. Sci. Eng., 591(2019), No. 1, p. 19.
|
[39] |
O. Barooni, M. Abbasi, M. Givi, and B. Bagheri, New method to improve the microstructure and mechanical properties of joint obtained using FSW, Int. J. Adv. Manuf. Technol., 93(2017), No. 9, p. 4371.
|
[40] |
Z.Y. Ma, A.L. Pilchak, M.C. Juhas, and J.C. Williams, Microstructural refinement and property enhancement of cast light alloys via friction stir processing, Scripta Mater., 58(2008), No. 5, p. 361. doi: 10.1016/j.scriptamat.2007.09.062
|
[41] |
V. Uthaisangsuk, Microstructure Based Formability Modeling of Multiphase Steels [Dissertation], IEHK, RWTH-Aachen, 2009.
|
[42] |
M. Naderi, M. Abbasi, and A. Saeed-Akbari, Enhanced mechanical properties of a hot-stamped advanced high-strength steel via tempering treatment, Metall. Mater. Trans. A, 44(2013), No. 4, p. 1852. doi: 10.1007/s11661-012-1546-1
|
[43] |
M. Paidar, A. Asgari, O.O. Ojo, and A. Saberi, Mechanical properties and wear behavior of AA5182/WC nanocomposite fabricated by friction stir welding at different tool traverse speeds, J. Mater. Eng. Perform., 27(2018), No. 4, p. 1714. doi: 10.1007/s11665-018-3297-7
|
[44] |
A. Moghanian, M. Paidar, S.S. Seyedafghahi, and O.O. Ojo, Friction stir welding of pure magnesium and polypropylene in a lap-joint configuration: Microstructure and mechanical properties, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 766. doi: 10.1007/s12613-019-1784-y
|
[45] |
Q. Yang, B.L. Xiao, and Z.Y. Ma, Influence of process parameters on microstructure and mechanical properties of friction-stir-processed Mg−Gd−Y−Zr casting, Metall. Mater. Trans. A, 43(2012), No. 6, p. 2094. doi: 10.1007/s11661-011-1076-2
|
[46] |
B. Bagheri, M. Abbasi, and R. Hamzeloo, The investigation into vibration effect on microstructure and mechanical characteristics of friction stir spot vibration welded aluminum: Simulation and experiment, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 234(2020), No. 9, p. 1809. doi: 10.1177/0954406219900194
|