留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 10
Oct.  2020

图(7)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2583
  • HTML全文浏览量:  487
  • PDF下载量:  61
  • 被引次数: 0
Rakesh B. Nair, H.S. Arora, and Harpreet Singh Grewal, Enhanced cavitation erosion resistance of a friction stir processed high entropy alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1353-1362. https://doi.org/10.1007/s12613-020-2000-9
Cite this article as:
Rakesh B. Nair, H.S. Arora, and Harpreet Singh Grewal, Enhanced cavitation erosion resistance of a friction stir processed high entropy alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1353-1362. https://doi.org/10.1007/s12613-020-2000-9
引用本文 PDF XML SpringerLink
研究论文

增强搅拌摩擦加工后高熵合金的抗空蚀性能

  • Research Article

    Enhanced cavitation erosion resistance of a friction stir processed high entropy alloy

    + Author Affiliations
    • Friction stir processing of an Al0.1CoCrFeNi high entropy alloy (HEA) was performed at controlled cooling conditions (ambient and liquid submerged). Microstructural and mechanical characterization of the processed and as-cast HEAs was evaluated using electron backscatter diffraction, micro-hardness testing and nanoindentation. HEA under the submerged cooling condition showed elongated grains (10 μm) with fine equiaxed grains (2 μm) along the boundary compared to the coarser grain (~2 mm) of as-cast HEA. The hardness showed remarkable improvements with four (submerged cooling condition) and three (ambient cooling condition) times that of as-cast HEA (HV ~150). The enhanced hardness is attributed to the significant grain refinement in the processed HEAs. Cavitation erosion behavior was observed for samples using an ultrasonication method. All of the HEAs showed better cavitation erosion resistance than the stainless steel 316L. The sample processed under a submerged liquid condition showed approximately 20 and 2 times greater erosion resistance than stainless steel 316L and as-cast HEA, respectively. The enhanced erosion resistances of the processed HEAs correlate to their increased hardness, resistance to plasticity, and better yield strength than the as-cast HEA. The surface of the tested samples showed nucleation and pit growth, and plastic deformation of the material followed by fatigue-controlled disintegration as the primary material removal mechanism.

    • loading
    • [1]
      J.P. Franc and J.M. Michel. Fundamentals of cavitation, [in] A. Thess, ed., Fluid Mechanics and Its Applications, Book Series, Vol. 76, Springer, Netherlands, 2005.
      [2]
      H.S. Grewal, A. Agrawal, H. Singh, and H.S. Arora, Cavitation erosion studies on friction stir processed hydroturbine steel, Trans. Indian Inst. Met., 65(2012), No. 6, p. 731. doi: 10.1007/s12666-012-0197-7
      [3]
      G.W. Stachowiak and A.W. Batchelor, Engineering Tribology, 4th ed., Butterworth-Heinemann, Oxford, 2013.
      [4]
      M.H. Tsai and J.W. Yeh, High-entropy alloys: A critical review, Mater. Res. Lett., 2(2014), No. 3, p. 107. doi: 10.1080/21663831.2014.912690
      [5]
      B.S. Murty, J.W. Yeh, and S. Ranganathan, High-Entropy Alloys, 1st ed., Butterworth-Heinemann, Oxford, 2014.
      [6]
      D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448. doi: 10.1016/j.actamat.2016.08.081
      [7]
      B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377(2004), p. 213. doi: 10.1016/j.msea.2003.10.257
      [8]
      J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
      [9]
      M.H. Tsai, Physical properties of high entropy alloys, Entropy, 15(2013), No. 12, p. 5338. doi: 10.3390/e15125338
      [10]
      P.F. Yu, H. Cheng, L.J. Zhang, H. Zhang, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, and R.P. Liu, Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy, Mater. Sci. Eng. A, 655(2016), p. 283. doi: 10.1016/j.msea.2015.12.085
      [11]
      S.W. Wu, G. Wang, J. Yi, Y.D. Jia, I. Hussain, Q.J. Zhai, and P.K. Liaw, Strong grain-size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy, Mater. Res. Lett., 5(2017), No. 4, p. 276. doi: 10.1080/21663831.2016.1257514
      [12]
      Y.Z. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, and P.K. Liaw, Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior, Corros. Sci., 119(2017), p. 33. doi: 10.1016/j.corsci.2017.02.019
      [13]
      C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh, and H.C. Shih, Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments, Corros. Sci., 50(2008), No. 7, p. 2053. doi: 10.1016/j.corsci.2008.04.011
      [14]
      J.H. Zhao, X.L. Ji, Y.P. Shan, Y. Fu, and Z. Yao, On the microstructure and erosion–corrosion resistance of AlCrFeCoNiCu high-entropy alloy via annealing treatment, Mater. Sci. Technol., 32(2016), No. 12, p. 1271. doi: 10.1080/02670836.2015.1116494
      [15]
      R.B. Nair, K. Selvam, H.S. Arora, S. Mukherjee, H. Singh, and H.S. Grewal, Slurry erosion behavior of high entropy alloys, Wear, 386-387(2017), p. 230. doi: 10.1016/j.wear.2017.01.020
      [16]
      R.B. Nair, H.S. Arora, S. Mukherjee, S. Singh, H. Singh, and H.S. Grewal, Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy, Ultrason. Sonochem., 41(2018), p. 252. doi: 10.1016/j.ultsonch.2017.09.044
      [17]
      C.L. Wu, S. Zhang, C.H. Zhang, H. Zhang, and S.Y. Dong, Phase evolution and cavitation erosion–corrosion behavior of FeCoCrAlNiTix high entropy alloy coatings on 304 stainless steel by laser surface alloying, J. Alloys Compd., 698(2017), p. 761. doi: 10.1016/j.jallcom.2016.12.196
      [18]
      D. Toma, W. Brandl, and G. Marginean, Wear and corrosion behaviour of thermally sprayed cermet coatings, Surf. Coat. Technol., 138(2001), No. 2-3, p. 149. doi: 10.1016/S0257-8972(00)01141-5
      [19]
      K.L. Choy, Chemical vapour deposition of coatings, Prog. Mater. Sci., 48(2003), No. 2, p. 57. doi: 10.1016/S0079-6425(01)00009-3
      [20]
      V.A.D. Souza and A. Neville, Aspects of microstructure on the synergy and overall material loss of thermal spray coatings in erosion–corrosion environments, Wear, 263(2007), No. 1-6, p. 339. doi: 10.1016/j.wear.2007.01.071
      [21]
      H.S. Grewal, H.S. Arora, H. Singh, and A. Agrawal, Surface modification of hydroturbine steel using friction stir processing, Appl. Surf. Sci., 268(2013), p. 547. doi: 10.1016/j.apsusc.2013.01.006
      [22]
      I. Charit and R.S. Mishra, High strain rate superplasticity in a commercial 2024 Al alloy via friction stir processing, Mater. Sci. Eng. A, 359(2003), No. 1-2, p. 290. doi: 10.1016/S0921-5093(03)00367-8
      [23]
      J.D. Escobar, E. Velásquez, T.F.A. Santos, A.J. Ramirez, and D. López, Improvement of cavitation erosion resistance of a duplex stainless steel through friction stir processing (FSP), Wear, 297(2013), No. 1-2, p. 998. doi: 10.1016/j.wear.2012.10.005
      [24]
      M. Hajian, A. Abdollah-zadeh, S.S. Rezaei-Nejad, H. Assadi, S.M.M. Hadavi, K. Chung, and M. Shokouhimehr, Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel, Mater. Des., 67(2015), p. 82. doi: 10.1016/j.matdes.2014.10.082
      [25]
      M. Hajian, A. Abdollah-zadeh, S.S. Rezaei-Nejad, H. Assadi, S.M.M. Hadavi, K. Chung, and M. Shokouhimehr, Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing, Appl. Surf. Sci., 308(2014), p. 184. doi: 10.1016/j.apsusc.2014.04.132
      [26]
      N. Kumar, M. Komarasamy, P. Nelaturu, Z. Tang, P.K. Liaw, and R.S. Mishra, Friction stir processing of a high entropy alloy Al0.1CoCrFeNi, JOM, 67(2015), No. 5, p. 1007. doi: 10.1007/s11837-015-1385-9
      [27]
      M. Komarasamy, N. Kumar, Z. Tang, R.S. Mishra, and P.K. Liaw, Effect of microstructure on the deformation mechanism of friction stir-processed Al0.1CoCrFeNi high entropy alloy, Mater. Res. Lett., 3(2015), No. 1, p. 30. doi: 10.1080/21663831.2014.958586
      [28]
      K. Selvam, B.S. Rakesh, H.S. Grewal, H.S. Arora, and H. Singh, High strain deformation of austenitic steel for enhancing erosion resistance, Wear, 376-377(2017), p. 1021. doi: 10.1016/j.wear.2017.01.014
      [29]
      W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7(1992), No. 6, p. 1564. doi: 10.1557/JMR.1992.1564
      [30]
      N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Doherty, and K.C. Cho, High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy, Mater. Des., 86(2015), p. 598. doi: 10.1016/j.matdes.2015.07.161
      [31]
      H.S. Arora, A. Ayyagari, J. Saini, K. Selvam, S. Riyadh, M. Pole, H.S. Grewal, and S. Mukherjee, High tensile ductility and strength in dual-phase bimodal steel through stationary friction stir processing, Sci. Rep., 9(2019), No. 1, art. No. 1976. doi: 10.1038/s41598-019-38957-1
      [32]
      F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon, Oxford, 2004.
      [33]
      S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, and Z.P. Lu, Stacking fault energy of face-centered-cubic high entropy alloys, Intermetallics, 93(2018), p. 269. doi: 10.1016/j.intermet.2017.10.004
      [34]
      A.J. Zaddach, C. Niu, C.C. Koch, and D.L. Irving, Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy, JOM, 65(2013), No. 12, p. 1780. doi: 10.1007/s11837-013-0771-4
      [35]
      S. Huang, W. Li, S. Lu, F.Y. Tian, J. Shen, E. Holmström, and L. Vitos, Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy, Scripta Mater., 108(2015), p. 44. doi: 10.1016/j.scriptamat.2015.05.041
      [36]
      J.B. Liu, C.X. Chen, Y.Q. Xu, S.W. Wu, G. Wang, H.T. Wang, Y.T. Fang, and L. Meng, Deformation twinning behaviors of the low stacking fault energy high-entropy alloy: An in-situ TEM study, Scripta Mater., 137(2017), p. 9. doi: 10.1016/j.scriptamat.2017.05.001
      [37]
      R.R. Eleti, T. Bhattacharjee, L.J. Zhao, P.P. Bhattacharjee, and N. Tsuji, Hot deformation behavior of CoCrFeMnNi FCC high entropy alloy, Mater. Chem. Phys., 210(2018), p. 176. doi: 10.1016/j.matchemphys.2017.06.062
      [38]
      K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater., 61(2013), No. 13, p. 4887. doi: 10.1016/j.actamat.2013.04.058
      [39]
      H.S. Grewal, R.M. Sanjiv, H.S. Arora, R. Kumar, A. Ayyagari, S. Mukherjee, and H. Singh, Activation energy and high temperature oxidation behavior of multi-principal element alloy, Adv. Eng. Mater., 19(2017), No. 11, art. No. 1700182. doi: 10.1002/adem.201700182
      [40]
      G.E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-hill, New York, 1986.
      [41]
      L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, and J.W. Qiao, Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy, J. Mater. Sci. Technol., 35(2019), No. 5, p. 917. doi: 10.1016/j.jmst.2018.11.023
      [42]
      J.R. Cahoon, W.H. Broughton, and A.R. Kutzak, The determination of yield strength from hardness measurements, Metall. Trans., 2(1971), No. 7, p. 1979.
      [43]
      A.E. Giannakopoulos and S. Suresh, Determination of elastoplastic properties by instrumented sharp indentation, Scripta Mater., 40(1999), No. 10, p. 1191. doi: 10.1016/S1359-6462(99)00011-1
      [44]
      F. Zhang, M.Z. Huang, and D.K. Shi, The relationship between the strain-hardening exponent n and the microstructure of metals, Mater. Sci. Eng. A, 122(1989), No. 2, p. 211. doi: 10.1016/0921-5093(89)90632-1
      [45]
      G. Bregliozzi, A. Di Schino, S.I.-U. Ahmed, J.M. Kenny, and H. Haefke, Cavitation wear behaviour of austenitic stainless steels with different grain sizes, Wear, 258(2005), No. 1-4, p. 503. doi: 10.1016/j.wear.2004.03.024
      [46]
      H.G. Feller and Y. Kharrazi, Cavitation erosion of metals and alloys, Wear, 93(1984), No. 3, p. 249. doi: 10.1016/0043-1648(84)90199-6
      [47]
      K. Selvam, J. Saini, G. Perumal, A. Ayyagari, R. Salloom, R. Mondal, S. Mukherjee, H.S. Grewal, and H.S. Arora, Exceptional cavitation erosion–corrosion behavior of dual-phase bimodal structure in austenitic stainless steel, Tribol. Int., 134(2019), p. 77. doi: 10.1016/j.triboint.2019.01.018
      [48]
      T.W. Zhang, S.G. Ma, D. Zhao, Y.C. Wu, Y. Zhang, Z.H. Wang, and J.W. Qiao, Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: Micromechanism and constitutive modeling, Int. J. Plast., 124(2020), p. 226. doi: 10.1016/j.ijplas.2019.08.013
      [49]
      M. Calcagnotto, D. Ponge, Y. Adachi, and D. Raabe, Effect of grain refinement on strength and ductility in dual-phase steels, [in] Proceedings of the 2nd International Symposium on Steel Science, Kyoto, 2009.
      [50]
      S. Zhang, C.L. Wu, C.H. Zhang, M. Guan, and J.Z. Tan, Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance, Opt. Laser Technol., 84(2016), p. 23. doi: 10.1016/j.optlastec.2016.04.011
      [51]
      K. Selvam, P. Mandal, H.S. Grewal, and H.S. Arora, Ultrasonic cavitation erosion–corrosion behavior of friction stir processed stainless steel, Ultrason. Sonochem., 44(2018), p. 331. doi: 10.1016/j.ultsonch.2018.02.041
      [52]
      M. Komarasamy, K. Alagarsamy, and R.S. Mishra, Serration behavior and negative strain rate sensitivity of Al0.1CoCrFeNi high entropy alloy, Intermetallics, 84(2017), p. 20. doi: 10.1016/j.intermet.2016.12.016

    Catalog


    • /

      返回文章
      返回