留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 11
Nov.  2020

图(8)

数据统计

分享

计量
  • 文章访问数:  2904
  • HTML全文浏览量:  534
  • PDF下载量:  76
  • 被引次数: 0
Mohsen Hajizadeh, Sajjad Emami, and Tohid Saeid, Influence of welding speed on microstructure formation in friction-stir-welded 304 austenitic stainless steels, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1517-1524. https://doi.org/10.1007/s12613-020-2001-8
Cite this article as:
Mohsen Hajizadeh, Sajjad Emami, and Tohid Saeid, Influence of welding speed on microstructure formation in friction-stir-welded 304 austenitic stainless steels, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1517-1524. https://doi.org/10.1007/s12613-020-2001-8
引用本文 PDF XML SpringerLink
研究论文

焊接速度对304奥氏体不锈钢摩擦搅拌焊接组织形成的影响


  • Research Article

    Influence of welding speed on microstructure formation in friction-stir-welded 304 austenitic stainless steels

    + Author Affiliations
    • The influence of welding speed on the joint microstructures of an austenitic stainless steel (ASS) produced by friction stir welding (FSW) was investigated. The FSW process was conducted using a rotational speed of 400 r/min and welding speeds of 50 and 150 mm/min. The study was carried out using electron backscattered diffraction (EBSD) technique in different regions of the resultant stir zones (SZs). The results show that the texture of the advancing side (AS) was mainly composed of

      \begin{document}${\rm C}\; \left\{ {001} \right\}  \left\langle {110} \right\rangle$\end{document}

      and cube

      $ \left\{ {001} \right\}\left\langle {100} \right\rangle $

      texture components along with partial

      ${\rm B}/\bar {\rm B}\; \left\{ {112} \right\}\left\langle {110} \right\rangle$

      component. Moving from the AS toward the center and the retreating side (RS), the cube texture component disappeared and the

      ${\rm A}_1^*/{\rm A}_{2}^*\; \left\{ {111} \right\}\left\langle {112} \right\rangle$

      component developed and predominated the other components. Higher welding speed greatly affected and decreased the intensity of the textures in the resultant SZs. Moreover, higher welding speed (lower heat input) resulted in lower frequency of cube texture in the AS.

    • loading
    • [1]
      S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, and M. Inagaki, Microstructural characterisation of stir zone containing residual ferrite in friction stir welded 304 austenitic stainless steel, Sci. Technol. Weld. Joining, 10(2005), No. 5, p. 550. doi: 10.1179/174329305X46691
      [2]
      A. Marchattiwar, A. Sarkar, J.K. Chakravartty, and B.P. Kashyap, Dynamic recrystallization during hot deformation of 304 austenitic stainless steel, J. Mater. Eng. Perform., 22(2013), No. 8, p. 2168. doi: 10.1007/s11665-013-0496-0
      [3]
      Sindo Kou, Welding Metallurgy, 2nd ed., John Wiley & Sons Publication, New Jersey, 2003.
      [4]
      S. Tokita, T. Yokoyama, H. Kokawa, Y.S Sato, and H.T Fujii, Friction stir welding of grain boundary engineered 304 austenitic stainless steel, [in] Proceedings of the 1st International Joint Symposium on Joining and Welding, Osaka, 2013, p. 407.
      [5]
      R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, 50(2005), No. 1-2, p. 1. doi: 10.1016/j.mser.2005.07.001
      [6]
      R.S. Mishra, P.S. De, and N. Kumar, Friction Stir Welding and Processing, Springer, Switzerland, 2014.
      [7]
      R.W. Fonda and K.E. Knipling, Texture development in friction stir welds, Sci. Technol. Weld. Joining, 16(2011), No. 4, p. 288. doi: 10.1179/1362171811Y.0000000010
      [8]
      Z.H. Zhang, W.Y. Li, J.L. Li, Y.J. Chao, and A. Vairis, Microstructure and anisotropic mechanical behavior of friction stir welded AA2024 alloy sheets, Mater. Charact., 107(2015), p. 112. doi: 10.1016/j.matchar.2015.06.039
      [9]
      P. Ghosh, O. Renk, and R. Pippan, Microtexture analysis of restoration mechanisms during high pressure torsion of pure nickel, Mater. Sci. Eng. A, 684(2017), p. 101. doi: 10.1016/j.msea.2016.12.032
      [10]
      F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004.
      [11]
      S. Mironov, K. Inagaki, Y.S. Sato, and H. Kokawa, Effect of welding temperature on microstructure of friction-stir welded aluminum alloy 1050, Metall. Mater. Trans. A, 46(2015), p. 783. doi: 10.1007/s11661-014-2651-0
      [12]
      S. Mironov, K. Inagaki, Y.S. Sato, and H. Kokawa, Microstructural evolution of pure copper during friction-stir welding, Philos. Mag., 95(2015), No. 4, p. 367. doi: 10.1080/14786435.2015.1006293
      [13]
      C. Meran, V. Kovan, and A. Alptekin, Friction stir welding of AISI 304 austenitic stainless steel, Materialwiss. Werkstofftech., 38(2007), No. 10, p. 829. doi: 10.1002/mawe.200700214
      [14]
      A.P. Reynolds, W. Tang, T. Gnaupel-Herold, and H. Prask, Structure, properties, and residual stress of 304L stainless steel friction stir welds, Scripta Mater., 48(2003), No. 9, p. 1289. doi: 10.1016/S1359-6462(03)00024-1
      [15]
      S.H.C. Park, Y.S Sato, H. Kokawa, K. Okamoto, S. Hirano, and M. Inagaki, Rapid formation of the sigma phase in 304 stainless steel during friction stir welding, Scripta Mater., 49(2003), No. 12, p. 1175. doi: 10.1016/j.scriptamat.2003.08.022
      [16]
      C. Meran and O.E. Canyurt, Friction stir welding of austenitic stainless steels, J. Achiev. Mater. Manuf. Eng., 43(2010), No. 1, p. 432.
      [17]
      Y.S. Sato, T.W. Nelson, and C.J. Sterling, Recrystallization in type 304L stainless steel during friction stirring, Acta Mater., 53(2005), No. 3, p. 637. doi: 10.1016/j.actamat.2004.10.017
      [18]
      S.S. Rezaei-Nejad, A. Abdollah-zadeh, M. Hajian, F. Kargar, and R. Seraj, Formation of nanostructure in AISI 316L austenitic stainless steel by friction stir processing, Procedia Mater. Sci., 11(2015), p. 397. doi: 10.1016/j.mspro.2015.11.008
      [19]
      M. Hajian, A. Abdollah-zadeh, S.S. Rezaei-Nejad, H. Assadi, S.M.M. Hadavi, K. Chung, and M. Shokouhimehr, Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel, Mater. Des., 67(2015), p. 82. doi: 10.1016/j.matdes.2014.10.082
      [20]
      F.C. Liu and T.W. Nelson, In-situ grain structure and texture evolution during friction stir welding of austenite stainless steel, Mater. Des., 115(2017), p. 467. doi: 10.1016/j.matdes.2016.11.066
      [21]
      S. Emami and T. Saeid, A comparative study on the microstructure development of friction stir welded 304 austenitic, 430 ferritic, and 2205 duplex stainless steels, Mater. Chem. Phys., 237(2019), art. No. 121833. doi: 10.1016/j.matchemphys.2019.121833
      [22]
      T. Saeid, A. Abdollah-zadeh, H. Assadi, and F. Malek Ghaini, Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel, Mater. Sci. Eng. A, 496(2008), No. 1-2, p. 262. doi: 10.1016/j.msea.2008.05.025
      [23]
      T. Saeid, A. Abdollah-zadeha, T. Shibayanagi, K. Ikeuchi, and H. Assadi, On the formation of grain structure during friction stir welding of duplex stainless steel, Mater. Sci. Eng. A, 527(2010), No. 24-25, p. 6484. doi: 10.1016/j.msea.2010.07.011
      [24]
      S. Emami, T. Saeid, and R.A. Khosroshahi, Microstructural evolution of friction stir welded SAF 2205 duplex stainless steel, J. Alloys Compd., 739(2018), p. 678. doi: 10.1016/j.jallcom.2017.12.310
      [25]
      M.M.Z. Ahmed, B.P. Wynne, M.M.El-Sayed Seleman, and W.M. Rainforth, A comparison of crystallographic texture and grain structure development in aluminum generated by friction stir welding and high strain torsion, Mater. Des., 103(2016), p. 259. doi: 10.1016/j.matdes.2016.04.056
      [26]
      X.C. Liu, Y.F. Sun, T. Nagira, K. Ushioda, and H. Fujii, Strain rate dependent micro-texture evolution in friction stir welding of copper, Materialia, 6(2019), art. No. 100302. doi: 10.1016/j.mtla.2019.100302

    Catalog


    • /

      返回文章
      返回