留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 9
Sep.  2020

图(7)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  2592
  • HTML全文浏览量:  696
  • PDF下载量:  58
  • 被引次数: 0
Hui-min Xia, Lan Zhang, Yong-chao Zhu, Na Li, Yu-qi Sun, Ji-dong Zhang,  and Hui-zhong Ma, Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., 27(2020), No. 9, pp. 1295-1300. https://doi.org/10.1007/s12613-020-2009-0
Cite this article as:
Hui-min Xia, Lan Zhang, Yong-chao Zhu, Na Li, Yu-qi Sun, Ji-dong Zhang,  and Hui-zhong Ma, Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., 27(2020), No. 9, pp. 1295-1300. https://doi.org/10.1007/s12613-020-2009-0
引用本文 PDF XML SpringerLink
研究论文

放电等离子烧结制备石墨烯纳米片增强7075铝合金复合材料的力学性能

  • Research Article

    Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering

    + Author Affiliations
    • A 0.3wt% graphene nanoplatelets (GNPs) reinforced 7075 aluminum alloy matrix (7075 Al) composite was fabricated by spark plasma sintering and its strength and wear resistance were investigated. The microstructures of the internal structure, the friction surface, and the wear debris were characterized by scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. Compared with the original 7075 aluminum alloy, the hardness and elastic modulus of the 7075 Al/GNPs composite were found to have increased by 29% and 36%, respectively. The results of tribological experiments indicated that the composite also exhibited a lower wear rate than the original 7075 aluminum alloy.

    • loading
    • [1]
      J. Suthar and K.M. Patel, Processing issues, machining, and applications of aluminum metal matrix composites, Mater. Manuf. Process., 33(2018), No. 5, p. 499. doi: 10.1080/10426914.2017.1401713
      [2]
      K.R. Ramkumar, S. Sivasankaran, F.A. Al-mufadi, S. Siddharth, and R. Raghu, Investigations on microstructure, mechanical, and tribological behaviour of AA7075–x wt.% TiC composites for aerospace applications, Arch. Civ. Mech. Eng., 19(2019), No. 2, p. 428. doi: 10.1016/j.acme.2018.12.003
      [3]
      T.W. Lu, W.P. Chen, P. Wang, M.D. Mao, Y.X. Liu, and Z.Q. Fu, Enhanced mechanical properties and thermo-physical properties of 7075Al hybrid composites reinforced by the mixture of Cr particles and SiCp, J. Alloys. Compd., 735(2018), p. 1137. doi: 10.1016/j.jallcom.2017.11.227
      [4]
      A.K. Kasar, G.P. Xiong, and P.L. Menezes, Graphene-reinforced metal and polymer matrix composites, JOM, 70(2018), No. 6, p. 829. doi: 10.1007/s11837-018-2823-2
      [5]
      S. Baskut, A. Cinar, and S. Turan, Directional properties and microstructures of spark plasma sintered aluminum nitride containing graphene platelets, J. Eur. Ceram. Soc., 37(2017), No. 12, p. 3759. doi: 10.1016/j.jeurceramsoc.2017.03.032
      [6]
      F.Y. Chen, J.M. Ying, Y.F. Wang, S.Y. Du, Z.P. Liu, and Q. Huang, Effects of graphene content on the microstructure and properties of copper matrix composites, Carbon, 96(2016), p. 836. doi: 10.1016/j.carbon.2015.10.023
      [7]
      A. Elghazaly, G. Anis, and H.G. Salem, Effect of graphene addition on the mechanical and tribological behavior of nanostructured AA2124 self-lubricating metal matrix composite, Composites Part A, 95(2017), p. 325. doi: 10.1016/j.compositesa.2017.02.006
      [8]
      W.Z. Zhai, X.L. Shi, J. Yao, A.M.M. Ibrahim, Z.S. Xu, Q.S. Zhu, Y.C. Xiao, L. Chen, and Q.X. Zhang, Investigation of mechanical and tribological behaviors of multilayer graphene reinforced Ni3Al matrix composites, Composites Part B, 70(2015), p. 149. doi: 10.1016/j.compositesb.2014.10.052
      [9]
      D.B. Xiong, M. Cao, Q. Guo, Z.Q. Tan, G.L. Fan, Z.Q. Li, and D. Zhang, High content reduced graphene oxide reinforced copper with a bioinspired nano-laminated structure and large recoverable deformation ability, Sci. Rep., 6(2016), art. No. 33801. doi: 10.1038/srep33801
      [10]
      S.W. Chang, A.K. Nair, and M.J. Buehler, Nanoindentation study of size effects in nickel-graphene nanocomposites, Philos. Mag. Lett., 93(2013), No. 4, p. 196. doi: 10.1080/09500839.2012.759293
      [11]
      W.M. Tian, S.M. Li, B. Wang, X. Chen, J.H. Liu, and M. Yu, Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 723. doi: 10.1007/s12613-016-1286-0
      [12]
      M. Prasad, T.N. Rao, P.S.R. Prasad, and D.S. Babu, Preparation of bulk graphene nanoplatelets by spark plasma sintering — electrical and thermal properties, Int. J. Nanosci., 15(2016), No. 05n06, art. No. 1660003. doi: 10.1142/S0219581X16600036
      [13]
      T. Borkar, H. Mohseni, J. Hwang, T. Scharf, J. Tiley, S.H. Hong, and R. Banerjee, Spark plasma sintering (SPS) of carbon nanotube (CNT)/graphene nanoplatelet (GNP)-nickel nanocomposites: Structure property analysis, [in] T. Sano and T. S. Srivatsan eds., Advanced Composites for Aerospace, Marine, and Land Applications II, The Minerais, Metals & Materials Society, Springer, Cham, 2015, p. 53.
      [14]
      X.N. Mu, H.M. Zhang, H.N. Cai, Q.B. Fan, Z.H. Zhang, Y. Wu, Z.J. Fu, and D.H. Yu, Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites, Mater. Sci. Eng. A, 687(2017), p. 164. doi: 10.1016/j.msea.2017.01.072
      [15]
      M.Y. Shen, T.Y. Chang, T.H. Hsieh, Y.L. Li, C.L. Chiang, H. Yang, and M.C. Yip, Mechanical properties and tensile fatigue of graphene nanoplatelets reinforced polymer nanocomposites, J. Nanomater., 2013(2013), art. No. 565401.
      [16]
      D. Berman, A. Erdemir, and A.V. Sumant, Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen, Carbon, 59(2013), p. 167. doi: 10.1016/j.carbon.2013.03.006
      [17]
      A. Nieto, J.M. Zhao, Y.H. Han, K.H. Hwang, and J.M. Schoenung, Microscale tribological behavior and in vitro biocompatibility of graphene nanoplatelet reinforced alumina, J. Mech. Behav. Biomed. Mater., 61(2016), p. 122. doi: 10.1016/j.jmbbm.2016.01.020
      [18]
      Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci., 41(2006), No. 3, p. 763. doi: 10.1007/s10853-006-6555-2
      [19]
      T.T. Liu, X.B. He, Q. Liu, S.B. Ren, L. Zhang, and X.H. Qu, Preparation and thermal conductivity of spark plasma sintered aluminum matrix composites reinforced with titanium-coated graphite fibers, Adv. Eng. Mater., 17(2015), No. 4, p. 502. doi: 10.1002/adem.201400148
      [20]
      A. Nieto, D. Lahiri, and A. Agarwal, Graphene nanoplatelets reinforced tantalum carbide consolidated by spark plasma sintering, Mater. Sci. Eng. A, 582(2013), p. 338. doi: 10.1016/j.msea.2013.06.006
      [21]
      M. Rashad, F. Pan, A. Tang, and M. Asif, Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method, Prog. Nat. Sci. Mater. Int., 24(2014), No. 2, p. 101. doi: 10.1016/j.pnsc.2014.03.012
      [22]
      G. Li and B.W. Xiong, Effects of graphene content on microstructures and tensile property of graphene-nanosheets / aluminum composites, J. Alloys Compd., 697(2017), p. 31. doi: 10.1016/j.jallcom.2016.12.147
      [23]
      A. Bahrami, N. Soltani, and M.I. Pech-canul, Effect of sintering temperature on tribological behavior of Ce-TZP/Al2O3 -aluminum nanocomposite, J. Compos. Meter., 49(2015), No. 28, p. 3507. doi: 10.1177/0021998314567010
      [24]
      R. Deaquino-lara, N. Soltani, A. Bahrami, E. Gutiérrez-castañeda, E. García-sánchez, and M.A.L. Rodríguez, Tribological characterization of Al7075–graphite composites fabricated by mechanical alloying and hot extrusion, Mater. Des., 67(2015), p. 224. doi: 10.1016/j.matdes.2014.11.045
      [25]
      N. Soltani, H.R. Jafari Nodooshan, A. Bahrami, M.I. Pech-canul, W.C. Liu, and G.H. Wu, Effect of hot extrusion on wear properties of Al–15 wt.% Mg2Si in situ metal matrix composites, Mater. Des., 53(2014), p. 774. doi: 10.1016/j.matdes.2013.07.084
      [26]
      M. Tabandeh-khorshid, E. Omrani, P.L. Menezes, and P.K. Rohatgi, Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets, Eng. Sci. Technol. Int. J., 19(2016), No. 1, p. 463.

    Catalog


    • /

      返回文章
      返回