Cite this article as: |
S.M. Muthu, M. Arivarasu, T. Hari Krishna, Supriyo Ganguly, K.V. Phani Prabhakar, and Saurav Mohanty, Improvement in hot corrosion resistance of dissimilar alloy 825 and AISI 321 CO2-laser weldment by HVOF coating in aggressive salt environment at 900°C, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1536-1550. https://doi.org/10.1007/s12613-020-2014-3 |
This study investigated the hot corrosion performance of a dissimilar weldment of Ni-based superalloy and stainless steel joined by CO2-laser welding and improved by high-velocity oxy-fuel (HVOF) coating in a Na2SO4−60wt%V2O5 environment at 900°C. A dissimilar butt joint of AISI 321 and alloy 825 was fabricated by CO2-laser welding with low heat input after obtaining the optimum welding parameters by bead-on-plate trials. The metallurgical and mechanical properties of the laser weldment were evaluated. The tensile test results indicated the occurrence of fracture in the base metal AISI 321 side. The HVOF process was employed to coat Ni−20wt%Cr on the weldment. To evaluate the surface morphology of the corrosion products formed on the uncoated and Ni−20wt%Cr-coated weldments, scanning electron microscopy (SEM) analysis was performed. Energy-dispersive spectroscopy (EDS) was used to determine the different elements present on the surface scales. The existence of oxide phases on the weldments was determined by X-ray diffraction (XRD). The cross sections of the weldments were characterized by SEM with EDS line mapping analysis. The results indicated that the Ni−20wt%Cr-coated weldment exhibited superior hot corrosion resistance due to the development of Cr2O3 and NiCr2O4 protective oxide scales.
[1] |
I.A. Choudhury and M.A. El-Baradie, Machinability of nickel-base super alloys: A general review, J. Mater. Process. Technol., 77(1998), No. 1-3, p. 278. doi: 10.1016/S0924-0136(97)00429-9
|
[2] |
E.O. Ezugwu, J. Bonney, and Y. Yamane, An overview of the machinability of aeroengine alloys, J. Mater. Process. Technol., 134(2003), No. 2, p. 233. doi: 10.1016/S0924-0136(02)01042-7
|
[3] |
A. Thakur, A. Mohanty, and S. Gangopadhyay, Comparative study of surface integrity aspects of Incoloy 825 during machining with uncoated and CVD multilayer coated inserts, Appl. Surf. Sci., 320(2014), p. 829. doi: 10.1016/j.apsusc.2014.09.129
|
[4] |
H. Aytekin and Y. Akçin, Characterization of borided Incoloy 825 alloy, Mater. Des., 50(2013), p. 515. doi: 10.1016/j.matdes.2013.03.015
|
[5] |
N. Hussain, G. Schanz, S. Leistikow, and K.A. Shahid, High-temperature oxidation and spalling behavior of incoloy 825, Oxid. Met., 32(1989), No. 5, p. 405.
|
[6] |
K.S. Guan, X.D. Xu, H. Xu, and Z.W. Wang, Effect of aging at 700°C on precipitation and toughness of AISI 321 and AISI 347 austenitic stainless steel welds, Nucl. Eng. Des., 235(2005), No. 23, p. 2485. doi: 10.1016/j.nucengdes.2005.06.006
|
[7] |
K.S. Min and S.W. Nam, Correlation between characteristics of grain boundary carbides and creep−fatigue properties in AISI 321 stainless steel, J. Nucl. Mater., 322(2003), No. 2-3, p. 91. doi: 10.1016/S0022-3115(03)00274-5
|
[8] |
M. Schwind, J. Källqvist, J.-O. Nilsson, J. Ågren, and H.-O. Andrén, σ-phase precipitation in stabilized austenitic stainless steels, Acta Mater., 48(2000), No. 10, p. 2473. doi: 10.1016/S1359-6454(00)00069-0
|
[9] |
M. Arivarasu, P. Roshith, R. Padmanaban, S. Thirumalini, K.V. Phani Prabhakar, and G. Padmanabham, Investigations on metallurgical and mechanical properties of CO2 laser beam welded Alloy 825, Can. Metall. Q., 56(2017), No. 2, p. 232. doi: 10.1080/00084433.2017.1315847
|
[10] |
S. Mohanty, M. Arivarasu, N. Arivazhagan, and K.V. Pani Prabhakar, The residual stress distribution of CO2 laser beam welded AISI 316 austenitic stainless steel and the effect of vibratory stress relief, Mater. Sci. Eng. A, 703(2017), p. 227. doi: 10.1016/j.msea.2017.07.066
|
[11] |
S. Kamal, R. Jayaganthan, S. Prakash, and S. Kumar, Hot corrosion behavior of detonation gun sprayed Cr3C2−NiCr coatings on Ni and Fe-based superalloys in Na2SO4−60%V2O5 environment at 900°C, J. Alloys Compd., 463(2008), No. 1-2, p. 358. doi: 10.1016/j.jallcom.2007.09.019
|
[12] |
N. Eliaz, G. Shemesh, and R.M. Latanision, Hot corrosion in gas turbine components, Eng. Fail. Anal., 9(2002), No. 1, p. 31. doi: 10.1016/S1350-6307(00)00035-2
|
[13] |
T.S. Sidhu, S. Prakash, and R.D. Agrawal, Studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications, Mater. Sci., 41(2005), No. 6, p. 805. doi: 10.1007/s11003-006-0047-z
|
[14] |
T.S. Sidhu, R.D. Agrawal, and S. Prakash, Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—A review, Surf. Coat. Technol., 198(2005), No. 1-3, p. 441. doi: 10.1016/j.surfcoat.2004.10.056
|
[15] |
T.S. Sidhu, S. Prakash, and R.D. Agrawal, Investigations on role of HVOF sprayed Co and Ni based coatings to combat hot corrosion, Corros. Eng. Sci. Technol., 43(2008), No. 4, p. 335. doi: 10.1179/174327808X286446
|
[16] |
S.M. Muthu, M. Arivarasu, N. Arivazhagan, and M.N. Rao, Investigation of hot corrosion resistance of bare and Ni−20%Cr coated superalloy 825 to Na2SO4−60%V2O5 environment at 900°C, Procedia Struct. Integrity, 14(2019), p. 290. doi: 10.1016/j.prostr.2019.05.037
|
[17] |
T.S. Sidhu, S. Prakash, and R.D. Agrawal, Hot corrosion studies of HVOF sprayed Cr3C2−NiCr and Ni−20Cr coatings on nickel-based superalloy at 900°C, Surf. Coat. Technol., 201(2006), No. 3-4, p. 792. doi: 10.1016/j.surfcoat.2005.12.030
|
[18] |
H. Singh, T.S. Sidhu, J. Karthikeyan, and S.B.S. Kalsi, Evaluation of characteristics and behavior of cold sprayed Ni−20Cr coating at elevated temperature in waste incinerator plant, Surf. Coat. Technol., 261(2015), p. 375. doi: 10.1016/j.surfcoat.2014.10.060
|
[19] |
S.M. Muthu and M, Arivarasu, Investigations of hot corrosion resistance of HVOF coated Fe-based superalloy A-286 in simulated gas turbine environment, Eng. Fail. Anal., 107(2020), art. No. 104224. doi: 10.1016/j.engfailanal.2019.104224
|
[20] |
S.S. Chatha, H.S. Sidhu, and B.S. Sidhu, High temperature hot corrosion behaviour of NiCr and Cr3C2−NiCr coatings on T91 boiler steel in an aggressive environment at 750°C, Surf. Coat. Technol., 206(2012), No. 19-20, p. 3839. doi: 10.1016/j.surfcoat.2012.01.060
|
[21] |
S.M. Muthu and M. Arivarasu, Air oxidation and hot corrosion behavior of bare and CO2 laser-welded superalloy A-286 at 700°C, Trans. Indian Inst. Met., 72(2019), p. 1607. doi: 10.1007/s12666-019-01713-0
|
[22] |
W.X. Zhou, K.S. Zhou, C.M. Deng, K.L. Zeng, and Y.X. Li, Hot corrosion behavior of HVOF-sprayed Cr3C2−WC−NiCoCrMo coating, Ceram. Int., 43(2017), No. 12, p. 9390. doi: 10.1016/j.ceramint.2017.04.109
|
[23] |
M.Z. Li, Y.X. Cheng, L. Guo, C.L. Zhang, Y.C. Zhang, S.X. He, and F.X. Ye, Preparation of plasma sprayed nanostructured GdPO4 thermal barrier coating and its hot corrosion behavior in molten salts, Ceram. Int., 43(2017), No. 10, p. 7797. doi: 10.1016/j.ceramint.2017.03.092
|
[24] |
V. Mannava, A.S. Rao, N. Paulose, M. Kamaraj, and R.S. Kottada, Hot corrosion studies on Ni-base superalloy at 650°C under marine-like environment conditions using three salt mixture (Na2SO4 + NaCl + NaVO3), Corros. Sci, 105(2016), p. 109. doi: 10.1016/j.corsci.2016.01.008
|
[25] |
S. Kamal, R. Jayaganthan, and S. Prakash, Evaluation of cyclic hot corrosion behaviour of detonation gun sprayed Cr3C2−25%NiCr coatings on nickel- and iron-based superalloys, Surf. Coat. Technol., 203(2009), No. 8, p. 1004. doi: 10.1016/j.surfcoat.2008.09.031
|
[26] |
T.S. Sidhu, S. Prakash, and R.D. Agrawal, A comparative study of hot corrosion resistance of HVOF sprayed NiCrBSi and Stellite-6 coated Ni-based superalloy at 900°C, Mater. Sci. Eng. A, 445-446(2007), p. 210. doi: 10.1016/j.msea.2006.09.015
|
[27] |
M. Arivarasu, M. Venkatesh Kannan, K. Devendranath Ramkumar, and N. Arivazhagan, Hot-corrosion resistance of dissimilar AISI 4340 and AISI 304L weldments in the molten salt environment at 600°C, Corros. Eng. Sci. Technol., 52(2017), No. 2, p. 114. doi: 10.1080/1478422X.2016.1213061
|