留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 3
Mar.  2021

图(8)

数据统计

分享

计量
  • 文章访问数:  2869
  • HTML全文浏览量:  581
  • PDF下载量:  96
  • 被引次数: 0
Wei-ning Shi, Shu-feng Yang, and Jing-she Li, Effect of nonmetallic inclusions on localized corrosion of spring steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 390-397. https://doi.org/10.1007/s12613-020-2018-z
Cite this article as:
Wei-ning Shi, Shu-feng Yang, and Jing-she Li, Effect of nonmetallic inclusions on localized corrosion of spring steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 390-397. https://doi.org/10.1007/s12613-020-2018-z
引用本文 PDF XML SpringerLink
研究论文

非金属夹杂物对弹簧钢局部腐蚀的影响

  • Research Article

    Effect of nonmetallic inclusions on localized corrosion of spring steel

    + Author Affiliations
    • Certain inclusions in high-strength 60Si2Mn–Cr spring steel result in poor resistance to localized corrosion. In this work, to study the effect of inclusions on the localized corrosion behavior of spring steel, accelerated corrosion tests were performed by immersing spring steel in 3wt% FeCl3 solution for different times. The results show that severe corrosion occurred in areas of clustered CaS inclusions. Sulfide inclusions containing Ca and Mg induced the strongest localized corrosion susceptibility. For the case of (Ca,Mn,Mg)S inclusions, the ability to induce localized corrosion susceptibility is ranked as follows: MgS > CaS > MnS. Moreover, CaS, (Ca,Mn)S, and (Ca,Mn,Mg)S inclusions were mainly responsible for inducing environmental embrittlement.
    • loading
    • [1]
      G. Niu, Y.L. Chen, H.B. Wu, X. Wang, and D. Tang, Corrosion behavior of high-strength spring steel for high-speed railway, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 527. doi: 10.1007/s12613-018-1599-2
      [2]
      V.I. Zurnadzhy, V.G. Efremenko, K.M. Wu, A.Y. Azarkhov, Y.G. Chabak, V.L. Greshta, O.B. Isayev, and M.V. Pomazkov, Effects of stress relief tempering on microstructure and tensile/impact behavior of quenched and partitioned commercial spring steel, Mater. Sci. Eng. A, 745(2019), p. 307. doi: 10.1016/j.msea.2018.12.106
      [3]
      R. Wang, Y.P. Bao, Y.H. Li, Z.J. Yan, D.Z. Li, and Y. Kang, Influence of metallurgical processing parameters on defects in cold-rolled steel sheet caused by inclusions, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 440. doi: 10.1007/s12613-019-1751-7
      [4]
      W.N. Shi, S.F. Yang, A.P. Dong, and J.S. Li, Understanding the corrosion mechanism of spring steel induced by MnS inclusions with different sizes, JOM, 70(2018), No. 11, p. 2513. doi: 10.1007/s11837-018-3026-6
      [5]
      Y. Hu, W.Q. Chen, C.J. Wan, F.J. Wang, and H.B. Han, Effect of deoxidation process on inclusion and fatigue performance of spring steel for automobile suspension, Metall. Mater. Trans. B, 49(2018), No. 2, p. 569. doi: 10.1007/s11663-018-1187-x
      [6]
      R. Wang, Y.P. Bao, Z.J. Yan, D.Z. Li, and Y. Kang, Comparison between the surface defects caused by Al2O3 and TiN inclusions in interstitial-free steel auto sheets, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 178. doi: 10.1007/s12613-019-1722-z
      [7]
      C. Gu, Y.P. Bao, P. Gan, M. Wang, and J.S. He, Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 623. doi: 10.1007/s12613-018-1609-4
      [8]
      S. Lyu, X.D. Ma, Z.Z. Huang, Z. Yao, H.G. Lee, Z.H. Jiang, G. Wang, J. Zou, and B.J. Zhao, Understanding the formation and evolution of oxide inclusions in Si-deoxidized spring steel, Metall. Mater. Trans. B, 50(2019), No. 4, p. 1862. doi: 10.1007/s11663-019-01613-0
      [9]
      S.K. Dwivedi and M. Vishwakarma, Hydrogen embrittlement in different materials: a review, Int. J. Hydrogen Energy, 43(2018), No. 46, p. 21603. doi: 10.1016/j.ijhydene.2018.09.201
      [10]
      M. Kubota, T. Suzuki, D. Hirakami, and K. Ushioda, Influence of hydrogen on fatigue property of suspension spring steel with artificial corrosion pit after multi-step shot peening, ISIJ Int., 55(2015), No. 12, p. 2667. doi: 10.2355/isijinternational.ISIJINT-2015-438
      [11]
      U. Zerbst, M. Madia, C. Klinger, D. Bettge, and Y. Murakami, Defects as a root cause of fatigue failure of metallic components. III: Cavities, dents, corrosion pits, scratches, Eng. Fail. Anal., 97(2019), p. 759. doi: 10.1016/j.engfailanal.2019.01.034
      [12]
      J.J. Shi, J. Ming, and Xin Liu, Pitting corrosion resistance of a novel duplex alloy steel in alkali-activated slag extract in the presence of chloride ions, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1134. doi: 10.1007/s12613-017-1504-4
      [13]
      Y.Z. Ma, C.L. Yang, Y.J. Liu, F.S. Yuan, S.S. Liang, H.X. Li, and J.S. Zhang, Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg–xZn–0.2Ca alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1274. doi: 10.1007/s12613-019-1860-3
      [14]
      T.H. Nam, M.S. Kwon, and J.G. Kim, Mechanism of corrosion fatigue cracking of automotive coil spring steel, Met. Mater. Int., 21(2015), No. 6, p. 1023. doi: 10.1007/s12540-015-5326-5
      [15]
      S. Komazaki, K. Kobayashi, T. Misawa, and T. Fukuzumi, Environmental embrittlement of automobile spring steels caused by wet–dry cyclic corrosion in sodium chloride solution, Corros. Sci., 47(2005), No. 10, p. 2450. doi: 10.1016/j.corsci.2004.10.008
      [16]
      L.W. Wang, J.C. Xin, L.J. Cheng, K. Zhao, B.Z. Sun, J.R. Li, X. Wang, and Z.Y. Cui, Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment, Corros. Sci., 147(2019), p. 108. doi: 10.1016/j.corsci.2018.11.007
      [17]
      B.W. Luo, J. Zhou, P.P. Bai, S.Q. Zheng, T. An, and X.L. Wen, Comparative study on the corrosion behavior of X52. 3Cr.and 13Cr steel in an O2–H2O–CO2 system: products. reaction kinetics.and pitting sensitivity, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 646. doi: 10.1007/s12613-017-1447-9
      [18]
      W.N. Shi, S.F. Yang, and J.S. Li, Correlation between Cr-depleted zone and local corrosion in stainless steels: a review, J. Chin. Soc. Corros. Prot., 39(2019), No. 4, p. 281.
      [19]
      Y.T. Zhou, S.J. Zheng, B. Zhang, and X.L. Ma, Atomic scale understanding of the interaction between alloying copper and MnS inclusions in stainless steels in NaCl electrolyte, Corros. Sci., 111(2016), p. 414. doi: 10.1016/j.corsci.2016.05.030
      [20]
      R.L. Liu, T.S. Li, L. Liu, Y. Cui, E.E. Oguzie, Y. Li, and F.H. Wang, Cellular automata study of the combined effects of passive film breakdown and repassivation on metastable pits on sputtered nanocrystalline stainless steel, J. Electrochem. Soc., 166(2019), p. 4. doi: 10.1149/2.0781910jes
      [21]
      L. Sun, Y.T. Sun, Y.Y. Liu, N.W. Dai, J. Li, and Y.M. Jiang, Effect of annealing temperature on pitting behavior and microstructure evolution of hyper‐duplex stainless steel 2707, Mater. Corros., 70(2019), No. 9, p. 1682. doi: 10.1002/maco.201910801
      [22]
      Y.F. Wang, G.X. Cheng, W. Wu, and Y. Li, Role of inclusions in the pitting initiation of pipeline steel and the effect of electron irradiation in SEM, Corros. Sci., 130(2018), p. 252. doi: 10.1016/j.corsci.2017.10.029
      [23]
      H. Feng, Z.H. Jiang, H.B. Li, P.C. Lu, S.C. Zhang, H.C. Zhu, B.B. Zhang, T. Zhang, D. Xu, and Z.G. Chen, Influence of nitrogen on corrosion behaviour of high nitrogen martensitic stainless steels manufactured by pressurized metallurgy, Corros. Sci., 144(2018), p. 288. doi: 10.1016/j.corsci.2018.09.002
      [24]
      H. Feng, H.B. Li, X.L. Wu, Z.H. Jiang, S. Zhao, T. Zhang, D.K. Xu, S.C. Zhang, H.C. Zhu, B.B. Zhang, and M.X. Yang, Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy, J. Mater. Sci. Technol., 34(2018), No. 10, p. 1781. doi: 10.1016/j.jmst.2018.03.021
      [25]
      L. Peguet, B. Malki, and B. Baroux, Influence of cold working on the pitting corrosion resistance of stainless steels, Corros. Sci., 49(2007), No. 4, p. 1933. doi: 10.1016/j.corsci.2006.08.021
      [26]
      M.M. Nishimoto, I.S. Muto, Y. Sugawara, and N. Hara, Morphological characteristics of trenching around MnS inclusions in type 316 stainless steel: the role of molybdenum in pitting corrosion resistance, J. Electrochem. Soc., 166(2019), No. 11, p. C3801.
      [27]
      H.Y. Ha, C.J. Park, and H.S. Kwon, Effects of non-metallic inclusions on the initiation of pitting corrosion in 11% Cr ferritic stainless steel examined by micro-droplet cell, Corros. Sci., 49(2007), No. 3, p. 1266. doi: 10.1016/j.corsci.2006.08.017
      [28]
      Y.B. Li, J. Liu, Y.D. Deng, X.P. Han, W.B. Hu, and C. Zhong, Ex situ characterization of metallurgical inclusions in X100 pipeline steel before and after immersion in a neutral pH bicarbonate solution, J. Alloys Compd., 673(2016), p. 28. doi: 10.1016/j.jallcom.2016.02.224
      [29]
      D. Guo, C.T. Kwok, and S.L.I. Chan, Spindle speed in friction surfacing of 316L stainless steel–How it affects the microstructure hardness and pitting corrosion resistance, Surf. Coat. Technol., 361(2019), p. 324. doi: 10.1016/j.surfcoat.2019.01.055
      [30]
      G.J. Cai and Y.R. Huang, Effects of Ce addition on grain boundary character distribution corrosion behavior and impact toughness of AISI 204Cu stainless steel, J. Mater. Eng. Perform., 28(2019), No. 6, p. 3683. doi: 10.1007/s11665-019-04112-0
      [31]
      H.X. Jia, X.W. Zhang, J.P. Xu, Y.P. Sun, and J.X. Li, Effect of hydrogen content and strain rate on hydrogen-induced delay cracking for hot-stamped steel, Metals, 9(2019), No. 7, p. 798. doi: 10.3390/met9070798
      [32]
      M. Wohlschlögel, R. Steegmüller, and A. Schüβler, Effect of inclusion size and distribution on the corrosion behavior of medical-device grade nitinol tubing, J. Mater. Eng. Perform., 23(2014), No. 7, p. 2635. doi: 10.1007/s11665-014-0996-6
      [33]
      X.F. Bai, Y.H. Sun, R.M. Chen, Y.M. Zhang, and Y.F. Cai, Formation and thermodynamics of CaS-bearing inclusions during Ca treatment in oil casting steels, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 573. doi: 10.1007/s12613-019-1766-0

    Catalog


    • /

      返回文章
      返回