留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 10
Oct.  2020

图(3)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  2574
  • HTML全文浏览量:  486
  • PDF下载量:  50
  • 被引次数: 0
Fu-kai Zheng, Guan-nan Zhang, Xiu-juan Chen, Xiao Yang, Zeng-chao Yang, Yong Li,  and Jiang-tao Li, A new method of preparing high-performance high-entropy alloys through high-gravity combustion synthesis, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1347-1352. https://doi.org/10.1007/s12613-020-2028-x
Cite this article as:
Fu-kai Zheng, Guan-nan Zhang, Xiu-juan Chen, Xiao Yang, Zeng-chao Yang, Yong Li,  and Jiang-tao Li, A new method of preparing high-performance high-entropy alloys through high-gravity combustion synthesis, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1347-1352. https://doi.org/10.1007/s12613-020-2028-x
引用本文 PDF XML SpringerLink
研究论文

一种超重力燃烧合成制备高性能高熵合金的新方法

  • Research Article

    A new method of preparing high-performance high-entropy alloys through high-gravity combustion synthesis

    + Author Affiliations
    • A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.

    • loading
    • [1]
      Z.F. Lei, X.J. Liu, Y. Wu, et al., Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature, 563(2018), No. 7732, p. 546. doi: 10.1038/s41586-018-0685-y
      [2]
      B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345(2014), No. 6201, p. 1153. doi: 10.1126/science.1254581
      [3]
      T.W. Zhang. S.G. Ma. D. Zhao. Y.C. Wu. Y. Zhang. Z.H. Wang and J.W. Qiao, Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: Micromechanism and constitutive modeling, Int. J. Plast., 124(2020), p. 226. doi: 10.1016/j.ijplas.2019.08.013
      [4]
      G. Qin, S. Wang, R.R. Chen, X. Gong, L. Wang, Y.Q. Su, J.J. Guo, and H.Z. Fu, Microstructures and mechanical properties of Nb-alloyed CoCrCuFeNi high-entropy alloys, J. Mater. Sci. Technol., 34(2018), No. 2, p. 365. doi: 10.1016/j.jmst.2017.11.007
      [5]
      E.P. George, D. Raabe, and R.O. Ritchie, High-entropy alloys, Nat. Rev. Mater., 4(2019), No. 8, p. 515. doi: 10.1038/s41578-019-0121-4
      [6]
      C.D. Gómez-Esparza, R. Peréz-Bustamante, J.M. Alvarado-Orozco, J. Muñoz-Saldaña, R. Martínez-Sánchez, J.M. Olivares-Ramírez, and A. Duarte-Moller, Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 634. doi: 10.1007/s12613-019-1771-3
      [7]
      X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132(2012), No. 2-3, p. 233. doi: 10.1016/j.matchemphys.2011.11.021
      [8]
      Y.J. Liang, L.J. Wang, Y.R. Wen, et al., High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys, Nat. Commun., 9(2018), No. 1, p. 4063. doi: 10.1038/s41467-018-06600-8
      [9]
      L.L. Wang, Z.A. Munir, and Y.M. Maximov, Thermite reactions: Their utilization in the synthesis and processing of materials, J. Mater. Sci., 28(1993), No. 14, p. 3693. doi: 10.1007/BF00353167
      [10]
      R.W. Cahn, Self-propagating high-temperature synthesis, Adv. Mater., 2(1990), No. 6-7, p. 314. doi: 10.1002/adma.19900020610
      [11]
      W.R. Wang, H.F. Xie, L. Xie, X. Yang, J.T. Li, and Q. Peng, Fabrication of ceramics/high-entropy alloys gradient composites by combustion synthesis in ultra-high gravity field, Mater. Lett., 233(2018), p. 4. doi: 10.1016/j.matlet.2018.08.059
      [12]
      G.H. Liu, J.T. Li, K.X. Chen, G. He, Z.C. Yang, and S.B. Guo, High-gravity combustion synthesis of W–Cr alloys with improved hardness, Mater. Chem. Phys., 182(2016), p. 6. doi: 10.1016/j.matchemphys.2016.07.036
      [13]
      G.H. Liu, J.T. Li, Z.C. Yang, S.B. Guo, and Y.X. Chen, High-gravity combustion synthesis and in situ melt infiltration: A new method for preparing cemented carbides, Scripta Mater., 69(2013), No. 8, p. 642. doi: 10.1016/j.scriptamat.2013.07.022
      [14]
      G.H. Liu, J.T Li, and Y.X. Chen, Phase separation in melt-casting of ceramic materials by high-gravity combustion synthesis, Mater. Chem. Phys., 133(2012), No. 2-3, p. 661. doi: 10.1016/j.matchemphys.2012.01.045
      [15]
      P.L. Mai, W.L. Fang, G.H. Liu, Y.X. Chen, S.L. He, and J.T. Li, Preparation of W–Ni graded alloy by combustion synthesis melt-casting under ultra-high gravity, Mater. Lett., 65(2011), No. 23-24, p. 3496. doi: 10.1016/j.matlet.2011.07.043
      [16]
      P.F. Paradis and T. Ishikawa, Surface tension and viscosity measurements of liquid and undercooled alumina by containerless techniques, Jpn. J. Appl. Phys., 44(2005), No. 7A, p. 5082. doi: 10.1143/JJAP.44.5082
      [17]
      B. Glorieux, F. Millot, J.C. Rifflet, and J.P. Coutures, Density of superheated and undercooled liquid alumina by a contactless method, Int. J. Thermophys., 20(1999), No. 4, p. 1085. doi: 10.1023/A:1022650703233
      [18]
      L. Battezzati and A.L. Greer, The viscosity of liquid metals and alloys, Acta. Metall., 37(1989), No. 7, p. 1791. doi: 10.1016/0001-6160(89)90064-3
      [19]
      T. Iida and R. I. L. Guthrie, The Physical Properties of Liquid Metals, Oxford Science Publications, Oxford, 1988.

    Catalog


    • /

      返回文章
      返回