留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 4
Apr.  2021

图(13)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  2821
  • HTML全文浏览量:  437
  • PDF下载量:  71
  • 被引次数: 0
Khalil Ganjehfard, Reza Taghiabadi, Mohammad Talafi Noghani,  and Mohammad Hossein Ghoncheh, Tensile properties and hot tearing susceptibility of cast Al–Cu alloys containing excess Fe and Si, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 718-728. https://doi.org/10.1007/s12613-020-2039-7
Cite this article as:
Khalil Ganjehfard, Reza Taghiabadi, Mohammad Talafi Noghani,  and Mohammad Hossein Ghoncheh, Tensile properties and hot tearing susceptibility of cast Al–Cu alloys containing excess Fe and Si, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 718-728. https://doi.org/10.1007/s12613-020-2039-7
引用本文 PDF XML SpringerLink
研究论文

含过量Fe和Si的铸态Al–Cu合金的拉伸性能和热裂敏感性

  • Research Article

    Tensile properties and hot tearing susceptibility of cast Al–Cu alloys containing excess Fe and Si

    + Author Affiliations
    • This study was undertaken to investigate the tensile properties and hot tearing susceptibility of cast Al–Cu alloys containing excess Fe (up to 1.5wt%) and Si (up to 2.5wt%). According to the results, the optimum tensile properties and hot tearing resistance were achieved at Fe/Si mass ratio of 1, where the α-Fe phase was the dominant Fe compound. Increasing the Fe/Si mass ratio above unity increased the amounts of detrimental β-CuFe platelets in the microstructure, deteriorating the tensile properties and hot tearing resistance. Decreasing the mass ratio below unity increased the size and fraction of Si needles and micropores in the microstructure, also impairing the tensile properties and hot tearing resistance. The investigation of hot-torn surfaces revealed that the β-CuFe platelets disrupted the tear healing phenomenon by blocking interdendritic feeding channels, while the α-Fe intermetallics improved the hot tearing resistivity due to their compact morphology and high melting point.

    • loading
    • [1]
      A. Lemieux, J. Langlais, D. Bouchard, and X.G. Chen, Effect of Si, Cu and Fe on mechanical properties of cast semi-solid 206 alloys, Trans. Nonferrous Met. Soc. China, 20(2010), No. 9, p. 1555. doi: 10.1016/S1003-6326(09)60338-1
      [2]
      M. Tiryakioğlu, J. Campbell, and N.D. Alexopoulos, On the ductility potential of cast Al–Cu–Mg (206) alloys, Mater. Sci. Eng. A, 506(2009), No. 1-2, p. 23. doi: 10.1016/j.msea.2008.10.044
      [3]
      F. Sheykh-jaberi, S.L. Cockcroft, D.M. Maijer, and A.B. Phillion, Comparison of the semi-solid constitutive behaviour of A356 and B206 aluminum foundry alloys, J. Mater. Process. Technol., 266(2019), p. 37. doi: 10.1016/j.jmatprotec.2018.10.029
      [4]
      E.M. Elgallad and X.G. Chen, On the microstructure and solution treatment of hot tearing resistant semi-solid 206 alloy, Mater. Sci. Eng. A, 556(2012), p. 783. doi: 10.1016/j.msea.2012.07.064
      [5]
      M.R.N. Esfahani and B. Niroumand, Study of hot tearing of A206 aluminum alloy using instrumented constrained T-shaped casting method, Mater. Charact., 61(2010), No. 3, p. 318. doi: 10.1016/j.matchar.2009.12.015
      [6]
      Y.L. Zhao, W.W. Zhang, C. Yang, D.T. Zhang, and Z. Wang, Effect of Si on Fe-rich intermetallic formation and mechanical properties of heat-treated Al–Cu–Mn–Fe alloys, J. Mater. Res., 33(2018), No. 8, p. 898. doi: 10.1557/jmr.2017.441
      [7]
      N.A. Belov, A.A. Aksenov, and D.G. Eskin, Iron in Aluminnium Alloys: Impurity and Alloying Elements, CRC Press, New York, 2002.
      [8]
      K. Liu, X. Cao, and X.G. Chen, Solidification of iron-rich intermetallic phases in Al–4.5Cu–0.3Fe cast alloy, Metall. Mater. Trans. A, 42(2011), No. 7, p. 2004. doi: 10.1007/s11661-010-0578-7
      [9]
      H.K. Kamga, D. Larouche, M. Bournane, and A. Rahem, Mechanical properties of aluminium–copper B206 alloys with iron and silicon additions, Int. J. Cast Met. Res., 25(2012), No. 1, p. 15. doi: 10.1179/1743133610Y.0000000012
      [10]
      W.W. Zhang, Y.L. Zhao, D.T. Zhang, Z.Q. Luo, C. Yang, and Y.Y. Li, Effect of Si addition and applied pressure on microstructure and tensile properties of as-cast Al–5.0Cu–0.6Mn–1.2Fe alloys, Trans. Nonferrous Met. Soc. China, 28(2018), No. 6, p. 1061. doi: 10.1016/S1003-6326(18)64765-X
      [11]
      K. Liu, X. Cao, and X.G. Chen, Effect of Mn, Si, and cooling rate on the formation of iron-rich intermetallics in 206 Al–Cu cast alloys, Metall. Mater. Trans. B, 43(2012), No. 5, p. 1231. doi: 10.1007/s11663-012-9694-7
      [12]
      K. Liu, X. Cao, and X.G. Chen, Tensile properties of Al–Cu 206 cast alloys with various iron contents, Metall. Mater. Trans. A, 45(2014), No. 5, p. 2498. doi: 10.1007/s11661-014-2207-3
      [13]
      E. Taghaddos, M.M. Hejazi, R. Taghiabadi, and S.G. Shabestari, Effect of iron-intermetallics on the fluidity of 413 aluminum alloy, J. Alloys Compd., 468(2009), No. 1-2, p. 539. doi: 10.1016/j.jallcom.2008.01.079
      [14]
      T.O. Mbuya, B.O. Odera, and S.P. Ng'ang'a, Influence of iron on castability and properties of aluminium silicon alloys: Literature review, Int. J. Cast Met. Res., 16(2003), No. 5, p. 451. doi: 10.1080/13640461.2003.11819622
      [15]
      H.K. Kamga, D. Larouche, M. Bournane, and A. Rahem, Hot tearing of aluminum–copper B206 alloys with iron and silicon additions, Mater. Sci. Eng. A, 527(2010), No. 27-28, p. 7413. doi: 10.1016/j.msea.2010.08.025
      [16]
      A. Bolouri, K. Liu, and X.G. Chen, Effects of iron-rich intermetallics and grain structure on semisolid tensile properties of Al–Cu 206 cast alloys near solidus temperature, Metall. Mater. Trans. A, 47(2016), No. 12, p. 6466. doi: 10.1007/s11661-016-3744-8
      [17]
      F. D’Elia, C. Ravindran, D. Sediako, K.U. Kainer, and N. Hort, Hot tearing mechanisms of B206 aluminum–copper alloy, Mater. Des., 64(2014), p. 44. doi: 10.1016/j.matdes.2014.07.024
      [18]
      H.F. Bishop, C.G. Ackerlind, and W.S. Pellini, Metallurgy and mechanics of hot tearing, AFS Trans., 60(1952), p. 818.
      [19]
      K. Liu, X. Cao, A. Bolouri, and X.-G. Chen, Effect of Fe-rich intermetallics on tensile behavior of Al–Cu 206 cast alloys at solid and near-solid states, [in] M. Tiryakioğlu, W. Griffiths, M. Jolly, eds., Shape Casting, The Minerals, Metals & Materials Series, Springer, Cham, 2019, p. 85.
      [20]
      N. Han, X.F. Bian, Z.K. Li, T. Mao, and C.D. Wang, Effect of Si on the microstructure and mechanical properties of the Al–4.5%Cu alloys, Acta Metall. Sinica, 19(2006), No. 6, p. 405. doi: 10.1016/S1006-7191(06)62080-2
      [21]
      J.G. Kaufman, Introduction to Aluminum Alloys and Tempers, ASM International, Materials Park, OH, 2000, p. 15.
      [22]
      S. Lin, A Study of Hot Tearing in Wrought Aluminum Alloys [Dissertation], University of Québec in Chicoutimi, Chicoutimi, PQ, 1999.
      [23]
      S. Lin, C. Aliravci, and M.O. Pekguleryuz, Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining, Metall. Mater. Trans. A, 38(2007), No. 5, p. 1056. doi: 10.1007/s11661-007-9132-7
      [24]
      R. Taghiabadi, A. Fayegh, A. Pakbin, M. Nazari, and M.H. Ghoncheh, Quality index and hot tearing susceptibility of Al–7Si–0.35Mg–xCu alloys, Trans. Nonferrous Met. Soc. China, 28(2018), No. 7, p. 1275. doi: 10.1016/S1003-6326(18)64783-1
      [25]
      S.G. Bai, N. Perevoshchikova, Y. Sha, and X.H. Wu, The effects of selective laser melting process parameters on relative density of the AlSi10Mg parts and suitable procedures of the Archimedes method, Appl. Sci., 9(2019), 3, p. 583. doi: 10.3390/app9030583
      [26]
      N. Tenekedjiev and J.E. Gruzleski, Hypereutectic aluminium–silicon casting alloys—A review, Cast Met., 3(1990), No. 2, p. 96. doi: 10.1080/09534962.1990.11819026
      [27]
      R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad, and B. Niroumand, CAR process: A technique for significant enhancement of as-cast MMC properties, Mater. Charact., 62(2011), No. 12, p. 1228. doi: 10.1016/j.matchar.2011.10.008
      [28]
      L. Qian, H. Toda, S. Nishido, and T. Kobayashi, Experimental and numerical investigations of the effects of the spatial distribution of α phase on fracture behavior in hypoeutectic Al–Si alloys, Acta Mater., 54(2006), No. 18, p. 4881. doi: 10.1016/j.actamat.2006.06.036
      [29]
      M. Gupta and S. Ling, Microstructure and mechanical properties of hypo/hyper-eutectic Al–Si alloys synthesized using a near-net shape forming technique, J. Alloys Compd., 287(1999), No. 1-2, p. 284. doi: 10.1016/S0925-8388(99)00062-6
      [30]
      F. Průša, M. Bláhová, D. Vojtěch, V. Kučera, A. Bernatiková, T.F. Kubatík, and A. Michalcová, High-strength ultra-fine-grained hypereutectic Al–Si–Fe–X (X = Cr, Mn) alloys prepared by short-term mechanical alloying and spark plasma sintering, Materials, 9(2016), No. 12, p. 973. doi: 10.3390/ma9120973
      [31]
      O. Prach, O. Trudonoshyn, P. Randelzhofer, C. Körner, and K. Durst, Effect of Zr, Cr and Sc on the Al–Mg–Si–Mn high-pressure die casting alloys, Mater. Sci. Eng. A, 759(2019), p. 603. doi: 10.1016/j.msea.2019.05.038
      [32]
      C.H. Cáceres, M.B. Djurdjevic, T.J. Stockwell, and J.H. Sokolowski, The effect of Cu content on the level of microporosity in Al–Si–Cu–Mg casting alloys, Scripta Mater., 40(1999), No. 5, p. 631. doi: 10.1016/S1359-6462(98)00492-8
      [33]
      M. Di Sabatino, On fluidity of aluminium alloys, Metall. Ital., 100(2008), No. 3, p. 17.
      [34]
      T. Magnusson and L. Arnberg, Density and solidification shrinkage of hypoeutectic aluminum–silicon alloys, Metall. Mater. Trans. A, 32(2001), No. 10, p. 2605. doi: 10.1007/s11661-001-0050-9
      [35]
      G. Razaz and T. Carlberg, Hot tearing susceptibility of AA3000 aluminum alloy containing Cu, Ti, and Zr, Metall. Mater. Trans. A, 50(2019), No. 8, p. 3842. doi: 10.1007/s11661-019-05290-1
      [36]
      M. Rappaz, I. Farup, and J.-M. Drezet, Study and modeling of hot tearing formation, [in] Proceedings of the Merton C. Flemings Symposium on Solidification and Materials Processing, Cambridge, Massachusetts, 2000, p. 213.
      [37]
      M.C. Flemings, E. Niyama, and H.F. Taylor, Fluidity of aluminium alloys: An experimental and quantitative evaluation, AFS Trans., 69(1961), p. 625.

    Catalog


    • /

      返回文章
      返回