留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 9
Sep.  2021

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  2711
  • HTML全文浏览量:  538
  • PDF下载量:  66
  • 被引次数: 0
Li Zhou, Shan Liu, Jie Min, Zhi-Wei Qin, Wen-Xiong He, Xiao-Guo Song, Hong-Bo Xu, and Ji-Cai Feng, Interface microstructure and formation mechanism of ultrasonic spot welding for Al–Ti dissimilar metals, Int. J. Miner. Metall. Mater., 28(2021), No. 9, pp. 1506-1514. https://doi.org/10.1007/s12613-020-2043-y
Cite this article as:
Li Zhou, Shan Liu, Jie Min, Zhi-Wei Qin, Wen-Xiong He, Xiao-Guo Song, Hong-Bo Xu, and Ji-Cai Feng, Interface microstructure and formation mechanism of ultrasonic spot welding for Al–Ti dissimilar metals, Int. J. Miner. Metall. Mater., 28(2021), No. 9, pp. 1506-1514. https://doi.org/10.1007/s12613-020-2043-y
引用本文 PDF XML SpringerLink
研究论文

铝–钛异种金属超声波点焊界面组织及形成机理研究 

  • Research Article

    Interface microstructure and formation mechanism of ultrasonic spot welding for Al–Ti dissimilar metals

    + Author Affiliations
    • The present study focuses on interface microstructure and joint formation. AA6061 aluminum alloy (Al) and commercial pure titanium (Ti) joints were welded by ultrasonic spot welding (USW). The welding energy was 1100–3200 J. The Al–Ti joint appearance and interface microstructure were observed mainly via optical microscopy and field emission scanning electron microscopy. Results indicated that a good joint can be achieved only with proper welding energy of 2150 J. No significant intermetallic compound (IMC) was found under all conditions. The high energy barriers of Al–Ti and difficulties in diffusion were the main reasons for the absence of IMC according to kinetic analysis. The heat input is crucial for the material plastic flow and bonding area, which plays an important role in the joint formation.

    • loading
    • [1]
      W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Recent development in aluminium alloys for the automotive industry, Mater. Sci. Eng. A, 280(2000), No. 1, p. 37. doi: 10.1016/S0921-5093(99)00653-X
      [2]
      I. Tomashchuk, P. Sallamand, E. Cicala, P. Peyre, and D. Grevey, Direct keyhole laser welding of aluminum alloy AA5754 to titanium alloy Ti6Al4V, J. Mater. Process. Technol., 217(2015), p. 96. doi: 10.1016/j.jmatprotec.2014.10.025
      [3]
      K. Liu, Y.J. Li, S.Z. Wei, and J. Wang, Interfacial microstructural characterization of Ti/Al joints by gas tungsten arc welding, Mater. Manuf. Processes, 29(2014), No. 8, p. 969. doi: 10.1080/10426914.2013.864414
      [4]
      R.K. Shiue, S.K. Wu, and S.Y. Chen, Infrared brazing of TiAl using Al-based braze alloys, Intermetallics, 11(2003), No. 7, p. 661. doi: 10.1016/S0966-9795(03)00077-3
      [5]
      W.H. Sohn, H.H. Bong, and S.H. Hong, Microstructure and bonding mechanism of Al/Ti bonded joint using Al–10Si–1Mg filler metal, Mater. Sci. Eng. A, 355(2003), No. 1-2, p. 231. doi: 10.1016/S0921-5093(03)00070-4
      [6]
      Z.P. Ma, W.W. Zhao, J.C. Yan, and D.C. Li, Interfacial reaction of intermetallic compounds of ultrasonic-assisted brazed joints between dissimilar alloys of Ti6Al4V and Al4Cu1Mg, Ultrason. Sonochem., 18(2011), No. 5, p. 1062. doi: 10.1016/j.ultsonch.2011.03.025
      [7]
      Z.H. Song, K. Nakata, A.P. Wu, and J.S. Liao, Interfacial microstructure and mechanical property of Ti6Al4V/A6061 dissimilar joint by direct laser brazing without filler metal and groove, Mater. Sci. Eng. A, 560(2013), p. 111. doi: 10.1016/j.msea.2012.09.044
      [8]
      S.Z. Wei, Y.J. Li, J. Wang, K. Liu, and P.F. Zhang, Microstructure and joining mechanism of Ti/Al dissimilar joint by pulsed gas metal arc welding, Int. J. Adv. Manuf. Technol., 70(2014), No. 8, p. 1137.
      [9]
      J.W. Choi, H.H Liu, and H. Fujii, Dissimilar friction stir welding of pure Ti and pure Al, Mater. Sci. Eng. A, 730(2018), p. 168. doi: 10.1016/j.msea.2018.05.117
      [10]
      X.W. Zhou, Y.H. Chen, S.H. Li, Y.D. Huang, K. Hao, and P. Peng, Friction stir spot welding-brazing of Al and hot-dip aluminized Ti alloy with Zn interlayer, Metals, 8(2018), No. 11, art. No. 922. doi: 10.3390/met8110922
      [11]
      H.Y. Zhao, M.R. Yu, Z.H. Jiang, L. Zhou, and X.G. Song, Interfacial microstructure and mechanical properties of Al/Ti dissimilar joints fabricated via friction stir welding, J. Alloys Compd., 789(2019), p. 139. doi: 10.1016/j.jallcom.2019.03.043
      [12]
      L. Zhou, M.R. Yu, Z.H. Jiang, F. Guo, H.Y. Zhao, Y.X. Huang, and X.G. Song, Influence of rotation speed on microstructure and mechanical properties of friction stir lap welded joints of AA 6061 and Ti6Al4V alloys, Metall. Mater. Trans. A, 50(2019), No. 2, p. 733. doi: 10.1007/s11661-018-5052-y
      [13]
      Y.H. Chen, C.H. Liu, and G.P. Liu, Study on the joining of titanium and aluminum dissimilar alloys by friction stir welding, Open Mater. Sci. J., 5(2011), No. 1, p. 256. doi: 10.2174/1874088X01105010256
      [14]
      Y.X. Huang, Z. Lv, L. Wan, J.J. Shen, and J.F. Dos Santos, A new method of hybrid friction stir welding assisted by friction surfacing for joining dissimilar Ti/Al alloy, Mater. Lett., 207(2017), p. 172. doi: 10.1016/j.matlet.2017.07.081
      [15]
      V.I. Mali, D.V. Pavliukova, I.A. Bataev, A.A. Bataev, A.I. Smirnov, P.S. Yartsev, and V.V. Bazarkina, Formation of the intermetallic layers in Ti–Al multilayer composites, Adv. Mater. Res., 311-313(2011), p. 236. doi: 10.4028/www.scientific.net/AMR.311-313.236
      [16]
      I.A. Bataev, A.A. Bataev, V.I. Mali, and D.V. Pavliukova, Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing, Mater. Des., 35(2012), p. 225. doi: 10.1016/j.matdes.2011.09.030
      [17]
      Z.L. Ni and F.X. Ye, Ultrasonic spot welding of aluminum alloys: A review, J. Manuf. Processes, 35(2018), p. 580. doi: 10.1016/j.jmapro.2018.09.009
      [18]
      S. Kumar, C.S. Wu, G.K. Padhy, and W. Ding, Application of ultrasonic vibrations in welding and metal processing: A status review, J. Manuf. Processes, 26(2017), p. 295. doi: 10.1016/j.jmapro.2017.02.027
      [19]
      F. Balle and J. Magin, Ultrasonic spot and torsion welding of aluminum to titanium alloys: Process, properties and interfacial microstructure, Phys. Procedia, 70(2015), p. 846. doi: 10.1016/j.phpro.2015.08.173
      [20]
      C.Q. Zhang, J.D. Robson, O. Ciuca, and P.B. Prangnell, Microstructural characterization and mechanical properties of high power ultrasonic spot welded aluminum alloy AA6111–TiAl6V4 dissimilar joints, Mater. Charact., 97(2014), p. 83. doi: 10.1016/j.matchar.2014.09.001
      [21]
      S.Q. Wang, V.K. Patel, S.D. Bhole, G.D. Wen, and D.L. Chen, Microstructure and mechanical properties of ultrasonic spot welded Al/Ti alloy joints, Mater. Des., 78(2015), p. 33. doi: 10.1016/j.matdes.2015.04.023
      [22]
      C.Q. Zhang, J.D. Robson, and P.B. Prangnell, Dissimilar ultrasonic spot welding of aerospace aluminum alloy AA2139 to titanium alloy TiAl6V4, J. Mater. Process. Technol., 231(2016), p. 382. doi: 10.1016/j.jmatprotec.2016.01.008
      [23]
      N. Sridharan, P. Wolcott, M. Dapino, and S.S. Babu, Microstructure and texture evolution in aluminum and commercially pure titanium dissimilar welds fabricated using ultrasonic additive manufacturing, Scripta Mater., 117(2016), p. 1. doi: 10.1016/j.scriptamat.2016.02.013
      [24]
      S. Shimizu, H.T. Fujii, Y.S. Sato, H. Kokawa, M.R. Sriraman, and S.S. Babu, Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061, Acta Mater., 74(2014), p. 234. doi: 10.1016/j.actamat.2014.04.043
      [25]
      J.F. Xie, Y.L. Zhu, F.L. Bian, and C. Liu, Dynamic recovery and recrystallization mechanisms during ultrasonic spot welding of Al–Cu–Mg alloy, Mater. Charact., 132(2017), p. 145. doi: 10.1016/j.matchar.2017.06.018
      [26]
      H.Q. Deng, W.Y. Hu, X.L. Shu, and B.W. Zhang, Analytic embedded-atom method approach to studying the surface segregation of Al–Mg alloys, Appl. Surf. Sci., 221(2004), No. 1-4, p. 408. doi: 10.1016/S0169-4332(03)00946-2
      [27]
      D.J. Field, G.M. Scamans, and E.P. Butler, The high temperature oxidation of Al–4.2 wt pct Mg alloy, Metall. Trans. A, 18(1987), No. 4, p. 463. doi: 10.1007/BF02648807
      [28]
      U.R. Kattner, J.C. Lin, and Y.A. Chang, Thermodynamic assessment and calculation of the Ti–Al system, Metall. Trans. A, 23(1992), No. 8, p. 2081. doi: 10.1007/BF02646001
      [29]
      V.K. Patel, S.D. Bhole, and D.L. Chen, Microstructure and mechanical properties of dissimilar welded Mg–Al joints by ultrasonic spot welding technique, Sci. Technol. Weld. Joining, 17(2012), No. 3, p. 202. doi: 10.1179/1362171811Y.0000000094
      [30]
      P. Prangnell, F. Haddadi, and Y.C. Chen, Ultrasonic spot welding of aluminium to steel for automotive applications-microstructure and optimisation, Mater. Sci. Technol., 27(2011), No. 3, p. 617. doi: 10.1179/026708310X520484
      [31]
      A. Panteli, J.D. Robson, I. Brough, and P.B. Prangnell, The effect of high strain rate deformation on intermetallic reaction during ultrasonic welding aluminium to magnesium, Mater. Sci. Eng. A, 556(2012), p. 31. doi: 10.1016/j.msea.2012.06.055
      [32]
      Y.J. Wang, G.J.J. Gao, and S. Ogata, Atomistic understanding of diffusion kinetics in nanocrystals from molecular dynamics simulations, Phys. Rev. B, 88(2013), No. 11, art. No. 115413. doi: 10.1103/PhysRevB.88.115413

    Catalog


    • /

      返回文章
      返回