Cite this article as: |
Hai-feng Zhang, Li Zhou, Wen-lin Li, Gao-hui Li, Yi-tang Tang, Ning Guo, and Ji-cai Feng, Effect of tool plunge depth on the microstructure and fracture behavior of refill friction stir spot welded AZ91 magnesium alloy joints, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 699-709. https://doi.org/10.1007/s12613-020-2044-x |
We used refill friction stir spot welding (RFSSW) to join 2-mm-thick AZ91D-H24 magnesium alloy sheets, and we investigated in detail the effect of tool plunge depth on the microstructure and fracture behavior of the joints. A sound joint surface can be obtained using plunge depths of 2.0 and 2.5 mm. Plunge depth was found to significantly affect the height of the hook, with greater plunge depths corresponding to more severe upward bending of the hook, which compromised the tensile-shear properties of the joints. The hardness reached a minimum at the thermo-mechanically affected zone due to the precipitation phases of this zone as it dissolved into the α-matrix during the welding process. The fracture modes of RFSSW joints can be divided into three types: shear fracture, plug fracture, and shear–plug fracture. Of these, the joint with a shear–plug fracture exhibited the best tensile-shear load of 6400 N.
[1] |
Z.W. Yu, A.T. Tang, Q. Wang, Z.Y. Gao, J.J. He, J. She, K. Song, and F.S. Pan, High strength and superior ductility of an ultra-fine grained magnesium-manganese alloy, Mater. Sci. Eng. A, 648(2015), p. 202. doi: 10.1016/j.msea.2015.09.065
|
[2] |
H. Huang, H.W. Miao, G.Y. Yuan, Z.C. Wang, and W.J. Ding, Fabrication of ultra-high strength magnesium alloys over 540 MPa with low alloying concentration by double continuously extrusion, J. Magnes. Alloys, 6(2018), No. 2, p. 107. doi: 10.1016/j.jma.2018.04.003
|
[3] |
Y. Uematsu, K. Tokaji, Y. Tozaki, T. Kurita, and S. Murata, Effect of re-filling probe hole on tensile failure and fatigue behavior of friction stir spot welded joints in Al–Mg–Si alloy, Int. J. Fatigue, 30(2008), No. 10-11, p. 1956. doi: 10.1016/j.ijfatigue.2008.01.006
|
[4] |
G.Q. Chen, S. Zhang, Y.C. Zhu, C.L. Yang, and Q.Y. Shi, Thermo-mechanical analysis of friction stir welding: A review on recent advances, Acta Metall. Sin. Eng. Lett., 33(2020), No. 1, p. 3. doi: 10.1007/s40195-019-00942-y
|
[5] |
Z.K. Shen, Y.Q. Ding, and A.P. Gerlich, Advances in friction stir spot welding, Crit. Rev. Solid State Mater. Sci., (2019), p. 1.
|
[6] |
Z. Shen, Y. Ding, J. Chen, B. Shalch Amirkhiz, J.Z. Wen, L. Fu, and A.P. Gerlich, Interfacial bonding mechanism in Al/coated steel dissimilar refill friction stir spot welds, J. Mater. Sci. Technol., 35(2019), No. 6, p. 1027. doi: 10.1016/j.jmst.2019.01.001
|
[7] |
C. Schilling and J. dos Santos, Method and Device for Joining at Least Two Adjoining Work Pieces by Friction Welding, US Patent, Appl. 6722556, 2004.
|
[8] |
L. Zhou, L.Y. Luo, T.P. Zhang, W.X. He, Y.X. Huang, and J.C. Feng, Effect of rotation speed on microstructure and mechanical properties of refill friction stir spot welded 6061-T6 aluminum alloy, Int. J. Adv. Manuf. Technol., 92(2017), No. 9-12, p. 3425. doi: 10.1007/s00170-017-0359-1
|
[9] |
S.D. Ji, Y. Wang, Z.W. Li, Y.M. Yue, and P. Chai, Effect of tool geometry on material flow behavior of refill friction stir spot welding, Trans. Indian. Inst. Met., 70(2017), No. 6, p. 1417. doi: 10.1007/s12666-016-0937-1
|
[10] |
G.H. Li, L. Zhou, L.Y. Luo, X.M. Wu, and N. Guo, Microstructural evolution and mechanical properties of refill friction stir spot welded alclad 2A12-T4 aluminum alloy, J. Mater. Res. Technol., 8(2019), No. 5, p. 4115. doi: 10.1016/j.jmrt.2019.07.021
|
[11] |
Z.W. Xu, Z.W. Li, S.D. Ji, and L.G. Zhang, Refill friction stir spot welding of 5083-O aluminum alloy, J. Mater. Sci. Technol., 34(2018), No. 5, p. 878. doi: 10.1016/j.jmst.2017.02.011
|
[12] |
Y.Q. Zhao, H.J. Liu, S.X. Chen, Z. Lin, and J.C. Hou, Effects of sleeve plunge depth on microstructures and mechanical properties of friction spot welded alclad 7B04-T74 aluminum alloy, Mater. Des., 62(2014), p. 40. doi: 10.1016/j.matdes.2014.05.012
|
[13] |
Z.K. Shen, X.Q. Yang, S. Yang, Z.H. Zhang, and Y.H. Yin, Microstructure and mechanical properties of friction spot welded AA 6061-T4 aluminum alloy, Mater. Des., 49(2013), p. 181. doi: 10.1016/j.matdes.2013.01.066
|
[14] |
T. Rosendo, M. Tier, J. Mazzaferro, C. Mazzaferro, T.R. Strohaecker, and J.F. Dos Santos, Mechanical performance of AA6181 refill friction spot welds under lap shear tensile loading, Fatigue. Fract. Eng. Mater. Struct., 38(2015), No. 12, p. 1443. doi: 10.1111/ffe.12312
|
[15] |
Z.W. Li, S.D. Ji, Y.N. Ma, P. Chai, Y.M. Yue, and S.S. Gao, Fracture mechanism of refill friction stir spot-welded 2024-T4 aluminum alloy, Int. J. Adv. Manuf. Technol., 86(2016), No. 5-8, p. 1925. doi: 10.1007/s00170-015-8276-7
|
[16] |
M. Tier, T. Rosendo, J. Mazzaferro, C. Mazzaferro, J. Santos, and T. Strohaecker, The weld interface for friction spot welded 5052 aluminum alloy, Int. J. Adv. Manuf. Technol., 90(2017), No. 1-4, p. 267. doi: 10.1007/s00170-016-9370-1
|
[17] |
M.D. Tier, T.S. Rosendo, J.F. dos Santos, N. Huber, J.A. Mazzaferro, C.P. Mazzaferro, and T.R. Strohaecker, The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminum welds, J. Mater. Process. Technol., 213(2013), No. 6, p. 997. doi: 10.1016/j.jmatprotec.2012.12.009
|
[18] |
J.Y. Cao, M. Wang, L. Kong, and L.J. Guo, Hook formation and mechanical properties of friction spot welding in alloy 6061-T6, J. Mater. Process. Technol., 230(2016), p. 254. doi: 10.1016/j.jmatprotec.2015.11.026
|
[19] |
L. Zhou, M.R. Yu, B.Y. Liu, Z.L. Zhang, S.W. Liu, X.G. Song, and H.Y. Zhao, Microstructure and mechanical properties of Al/steel dissimilar welds fabricated by friction surfacing assisted friction stir lap welding, J. Mater. Res. Technol., 9(2020), No. 1, p. 212. doi: 10.1016/j.jmrt.2019.10.046
|
[20] |
J.Y. Cao, M. Wang, L. Kong, H.X. Zhao, and P. Chai, Microstructure, texture and mechanical properties during refill friction stir spot welding of 6061-T6 alloy, Mater. Charact., 128(2017), p. 54. doi: 10.1016/j.matchar.2017.03.023
|
[21] |
S.G. Arul, S.F. Miller, G.H. Kruger, T.Y. Pan, P.K. Mallick, and A.J. Shih, Experimental study of joint performance in spot friction welding of 6111-T4 aluminium alloy, Sci. Technol. Weld. Joining, 13(2008), No. 7, p. 629. doi: 10.1179/136217108X363900
|
[22] |
T. Rosendo, B. Parra, M.A.D. Tier, A.A.M. da Silva, J.F. Dos Santos, T.R. Strohaecker, and N.G. Alcântara, Mechanical and microstructural investigation of friction spot welded AA6181-T4 aluminum alloy, Mater. Des., 32(2011), No. 3, p. 1094. doi: 10.1016/j.matdes.2010.11.017
|
[23] |
Y.M. Yue, Y. Shi, S.D. Ji, Y. Wang, and Z.W. Li, Effect of sleeve plunge depth on microstructure and mechanical properties of refill friction stir spot welding of 2198 aluminum alloy, J. Mater. Eng. Perform., 26(2017), No. 10, p. 5064. doi: 10.1007/s11665-017-2929-7
|
[24] |
L.C. Campanelli, U.F.H. Suhuddin, J.F. Dos Santos and N.G. de Alcantara, Parameters optimization for friction spot welding of AZ31 magnesium alloy by taguchi method, Soldagem Inspeção, 17(2012), No. 1, p. 26.
|
[25] |
R.I. Rodriguez, J.B. Jordon, H.M. Rao, H. Badarinarayan, Y. Wei, Haitham El Kadiri, and P.G. Allison, Microstructure, texture, and mechanical properties of friction stir spot welded rare-earth containing ZEK100 magnesium alloy sheets, Mater. Sci. Eng. A, 618(2014), p. 637. doi: 10.1016/j.msea.2014.09.010
|
[26] |
J.B. Jordon, M.F. Horstemeyer, S.R. Daniewicz, H. Badarinarayan, and J. Grantham, Fatigue characterization and modeling of friction stir spot welds in magnesium AZ31 alloy, J. Eng. Mater. Technol., 132(2010), No. 4, art. No. 041008. doi: 10.1115/1.4002330
|
[27] |
L.C. Campanelli, U.F. H. Suhuddin, A.Í.S. Antonialli, J.F. dos Santos, N.G. de Alcântara, and C. Bolfarini, Metallurgy and mechanical performance of AZ31 magnesium alloy friction spot welds, J. Mater. Process. Technol., 213(2013), No. 4, p. 515. doi: 10.1016/j.jmatprotec.2012.11.002
|
[28] |
Z.K. Shen, X.Q. Yang, Z.H. Zhang, L. Cui, and T.L. Li, Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints, Mater. Des., 44(2013), p. 476. doi: 10.1016/j.matdes.2012.08.026
|
[29] |
Q. Yang, S. Mironov, Y.S. Sato, and K. Okamoto, Material flow during friction stir spot welding, Mater. Sci. Eng. A, 527(2010), No. 16-17, p. 4389. doi: 10.1016/j.msea.2010.03.082
|
[30] |
J. Chen, H. Fujii, Y.F. Sun, Y. Morisada, K. Kondoh, and K. Hashimoto, Effect of grain size on the microstructure and mechanical properties of friction stir welded non-combustive magnesium alloys, Mater. Sci. Eng. A, 549(2012), p. 176. doi: 10.1016/j.msea.2012.04.030
|
[31] |
G.V.V. Surya Kiran, K.H. Krishna, S.K. Sameer, M. Bhargavi, B.S. Kumar, G.M. Rao, Y. Naidubabu, R. Dumpala, and B.R. Sunil, Machining characteristics of fine grained AZ91 Mg alloy processed by friction stir processing, Trans. Nonferrous Met. Soc. China, 27(2017), No. 4, p. 804. doi: 10.1016/S1003-6326(17)60092-X
|
[32] |
H.J. Zhang, M. Wang, X. Zhang, and G.X. Yang, Microstructural characteristics and mechanical properties of bobbin tool friction stir welded 2A14-T6 aluminum alloy, Mater. Des., 65(2015), p. 559. doi: 10.1016/j.matdes.2014.09.068
|
[33] |
G.H. Li, L. Zhou, S.F. Luo, F.B. Dong, and N. Guo, Microstructure and mechanical properties of bobbin tool friction stir welded ZK60 magnesium alloy, Mater. Sci. Eng. A, 776(2020), art. No. 138953. doi: 10.1016/j.msea.2020.138953
|
[34] |
Y.B. Ji, K. Soon Ⅱ, M.D. Jeong, and P.H. Heon, Preparation of AZ91D slurries for semi-solid forming using Al8(Mn, Fe)5 precipitates, J. Rare Earths, 22(2004), No. Z2, p. 42.
|
[35] |
S.H.C. Park, Y.S. Sato, and H. Kokawa, Microstructural evolution and its effect on Hall-Petch relationship in friction stir welding of thixomolded Mg alloy AZ91D, J. Mater. Sci., 38(2003), No. 21, p. 4379. doi: 10.1023/A:1026351619636
|
[36] |
C.H. Cáceres and A.H. Blake, On the strain hardening behaviour of magnesium at room temperature, Mater. Sci. Eng. A, 462(2007), No. 1-2, p. 193. doi: 10.1016/j.msea.2005.12.113
|
[37] |
H. Adib, J. Jeong, and G. Pluvinage, Three-dimensional finite element analysis of tensile-shear spot-welded joints in tensile and compressive loading conditions, Strength Mater., 36(2004), No. 4, p. 353. doi: 10.1023/B:STOM.0000041536.03924.d4
|
[38] |
L. Zhou, G.H. Li, R.X. Zhang, W.L. Zhou, W.X. He, Y.X. Huang and X.G. Song, Microstructure evolution and mechanical properties of friction stir spot welded dissimilar aluminum-copper joint, J. Alloys Compd., 775(2019), p. 372. doi: 10.1016/j.jallcom.2018.10.045
|