留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 3
Mar.  2021

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  2794
  • HTML全文浏览量:  426
  • PDF下载量:  34
  • 被引次数: 0
Yao Huang, Wei-ning Liu, Ai-min Zhao, Jun-ke Han, Zhi-gang Wang, and Hong-xiang Yin, Effect of Mo content on the thermal stability of Ti–Mo-bearing ferritic steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 412-421. https://doi.org/10.1007/s12613-020-2045-9
Cite this article as:
Yao Huang, Wei-ning Liu, Ai-min Zhao, Jun-ke Han, Zhi-gang Wang, and Hong-xiang Yin, Effect of Mo content on the thermal stability of Ti–Mo-bearing ferritic steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 412-421. https://doi.org/10.1007/s12613-020-2045-9
引用本文 PDF XML SpringerLink
研究论文

Mo含量对Ti–Mo系铁素体钢热稳定性影响

  • Research Article

    Effect of Mo content on the thermal stability of Ti–Mo-bearing ferritic steel

    + Author Affiliations
    • The effects of tempering holding time at 700°C on the morphology, mechanical properties, and behavior of nanoparticles in Ti–Mo ferritic steel with different Mo contents were analyzed using scanning electron microscopy and transmission electron microscopy. The equilibrium solid solution amounts of Mo, Ti, and C in ferritic steel at various temperatures were calculated, and changes in the sizes of nanoparticles over time at different Mo contents were analyzed. The experimental results and theoretical calculations were in good agreement with each other and showed that the size of nanoparticles in middle Mo content nano-ferrite (MNF) steel changed the least during aging. High Mo contents inhibited the maturation and growth of nanoparticles, but no obvious inhibitory effect was observed when the Mo content exceeded 0.37wt%. The tensile strength and yield strength continuously decreased with the tempering time. Analysis of the strengthening and toughening mechanisms showed that the different mechanical properties among the three different Mo content experiment steels were mainly determined by grain refinement strengthening (the difference range was 30–40 MPa) and precipitation strengthening (the difference range was 78–127 MPa). MNF steel displayed an ideal chemical ratio and the highest thermodynamic stability, whereas low Mo content nano-ferrite (LNF) steel and high Mo content nano-ferrite (HNF) steel displayed relatively similar thermodynamic stabilities.

    • loading
    • [1]
      J.B. Seol, S. H., Na, B. Gault, J.E. Kim, J.C. Han, C.G. Park, and D. Raabe, Core-shell nanoparticle arrays double the strength of steel, Sci. Rep., 7(2017), art. No. 42547. doi: 10.1038/srep42547
      [2]
      A. Rahnama, S. Clark, V. Janik, and S. Sridhar, A phase-field model for interphase precipitation in V-micro-alloyed structural steels, Comput. Mater. Sci., 137(2017), p. 257. doi: 10.1016/j.commatsci.2017.05.037
      [3]
      S. Mukherjee, I. Timokhina, C. Zhu C, S.P. Ringer, and P.D. Hodgson, Clustering and precipitation processes in a ferritic titanium-molybdenum microalloyed steel, J. Alloys Compd., 690(2017), p. 621. doi: 10.1016/j.jallcom.2016.08.146
      [4]
      C.Y. Chen, J.R. Yang, C.C. Chen, and S.F. Chen, Microstructural characterization and strengthening behavior of nanometer sized carbides in Ti–Mo microalloyed steels during continuous cooling process, Mater. Charact., 114(2016), p. 18. doi: 10.1016/j.matchar.2016.01.023
      [5]
      S. Mukherjee, I.B. Timokhina, C. Zhu, S.P. Ringer, and P.D. Hodgson, Three-dimensional atom probe microscopy study of interphase precipitation and nanoclusters in thermomechanically treated titanium–molybdenum steels, Acta Mater., 61(2013), No. 7, p. 2521. doi: 10.1016/j.actamat.2013.01.028
      [6]
      Y. Huang, A.M. Zhao, X.P. Wang, X.M. Wang, J.B. Yang, J.K. Han, and F.L. Yang, A high-strength high-ductility Ti- and Mo-bearing ferritic steel, Metal. Mater. Trans. A, 47(2016), No. 1, p. 450. doi: 10.1007/s11661-015-3232-6
      [7]
      Y. Huang, A.M. Zhao, Y.F. Cheng, X.P. Wang, J.B. Yang, and H.Q. Liu, Interphase precipitation behavior of nano-sized carbides in low carbon steel, Chin. J. Eng., 37(2015), No. 7, p. 896.
      [8]
      X.P. Wang, A.M. Zhao, Z.Z. Zhao, Y. Huang, Z.D. Geng, and Y. Yu, Mechanical properties and characteristics of nanometer-sized precipitates in hot-rolled low-carbon ferritic steel, Int. J. Miner. Metal. Mater., 21(2014), No. 3, p. 266. doi: 10.1007/s12613-014-0904-y
      [9]
      X.P. Wang, A.M. Zhao, Z.Z. Zhao, Y. Huang, Z.D. Geng, and Y. Yu, Precipitation strengthening by nanometer-sized carbides in hot-rolled ferritic steels, J. Iron Steel Res. Int., 21(2014), No. 12, p. 1140. doi: 10.1016/S1006-706X(14)60196-5
      [10]
      Y. Funakawa, Mechanical properties of ultra fine particle dispersion strengthened ferritic steel, Mater. Sci. Forum, 706-709(2012), p. 2096. doi: 10.4028/www.scientific.net/MSF.706-709.2096
      [11]
      Y. Funakawa, K. Seto, and H. Nakamichi, Strengthening of ferritic steel by interface precipitated carbides in rows, Mater. Sci. Forum, 638-642(2010), p. 3218. doi: 10.4028/www.scientific.net/MSF.638-642.3218
      [12]
      C.Y. Chen, H.W. Yen, F.H. Kao, Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides, Mater. Sci. Eng. A, 499(2009), No. 1-2, p. 162. doi: 10.1016/j.msea.2007.11.110
      [13]
      W.B. Lee, S.G. Hong, C.G. Park, and S.H. Park, Carbide precipitation and high-temperature strength of hot-rolled high-strength, low-alloy steels containing Nb and Mo, Metall. Mater. Trans. A, 33(2002), No. 6, p. 1689. doi: 10.1007/s11661-002-0178-2
      [14]
      W.B. Lee, S.G. Hong, C.G. Park, K.H. Kim, and S.H. Park, Influence of Mo on precipitation hardening in hot rolled HSLA steels containing Nb, Scripta Mater., 43(2000), No. 4, p. 319. doi: 10.1016/S1359-6462(00)00411-5
      [15]
      Y. Funakawa and K. Seto, Coarsening behavior of nanometer-sized carbides in hot-rolled high strength sheet steel, Mater. Sci. Forum, 539-543(2007), p. 4813. doi: 10.4028/www.scientific.net/MSF.539-543.4813
      [16]
      J.H. Jang, C.H. Lee, Y.U. Heo, and D.W. Suh, Stability of (Ti, M)C (M = Nb, V, Mo and W) carbide in steels using first-principles calculations, Acta Mater., 60(2012), No. 1, p. 208. doi: 10.1016/j.actamat.2011.09.051
      [17]
      Z.Q. Wang, H. Zhang, C.H. Guo, W.B. Liu, Z.G. Yang, X.J. Sun, and Z.Y. Zhang, and F.C. Jiang, Effect of molybdenum addition on the precipitation of carbides in the austenite matrix of titanium micro-alloyed steels, J. Mater. Sci., 51(2016), No. 10, p. 4996. doi: 10.1007/s10853-016-9804-z
      [18]
      Z.Q. Wang, X.J. Sun, Z.G. Yang, Q.L. Yong, C. Zhang, Z.D. Li, and Y.Q. Weng, Effect of Mn concentration on the kinetics of strain induced precipitation in Ti microalloyed steels, Mater. Sci. Eng. A, 561(2013), p. 212. doi: 10.1016/j.msea.2012.10.085
      [19]
      R. Uemori, R. Chijiiwa, H. Tamehiro, and H. Morikawa, AP-FIM study on the effect of Mo addition on microstructure in Ti–Nb steel, Appl. Surf. Sci., 76-77(1994), p. 255. doi: 10.1016/0169-4332(94)90351-4
      [20]
      M.G. Akben, B. Bacroix, and J.J. Jonas, Effect of vanadium and molybdenum addition on high temperature recovery, recrystallization and precipitation behavior of niobium-based microalloyed steels, Acta Metall., 31(1983), No. 1, p. 161. doi: 10.1016/0001-6160(83)90076-7
      [21]
      E. Joon Chun, H. Do, S. Kim, D.G. Nam, Y.H. Park, and N. Kang, Effect of nanocarbides and interphase hardness deviation on stretch-flangeability in 998 MPa hot-rolled steels, Mater. Chem. Phys., 140(2013), No. 1, p. 307. doi: 10.1016/j.matchemphys.2013.03.041
      [22]
      N. Saini, C. Pandey, M.M. Mahapatra, and R.S. Mulik, On study of effect of varying tempering temperature and notch geometry on fracture surface morphology of P911 (9Cr–1Mo–1W–V–Nb) steel, Eng. Fail. Anal., 85(2018), p. 104. doi: 10.1016/j.engfailanal.2017.12.013
      [23]
      J.C. Cao, Q.L. Yong, Q.Y. Liu, and X.J. Sun, Precipitation of MC phase and precipitation strengthening in hot rolled Nb–Mo and Nb–Ti steels, J. Mater. Sci., 42(2007), No. 24, p. 10080. doi: 10.1007/s10853-007-2000-4
      [24]
      Q.L. Yong, Second Phase in Iron and Steel Materials, Metallurgical Industry Press, 2006.
      [25]
      I.M. Lifshitz and V.V. Slyozov, The kinetics of precipitation from supersturated sold solutions, J. Phys. Chem. Solids, 19(1961), No. 1-2, p. 35. doi: 10.1016/0022-3697(61)90054-3
      [26]
      C. Wagner, Theorie der alterung von niederschlägen durch umlösen (ostwald‐reifung), Zeitschrift Für Elektrochemie Berichte Der Bunsengesellschaft Für Physikalische Chemie, 65(1961), No. 7-8, p. 581.
      [27]
      M.V. Speight, Growth kinetics of grain-boundary precipitates, Acta Metall., 16(1968), No. 1, p. 133. doi: 10.1016/0001-6160(68)90081-3
      [28]
      Y. Huang, Study on the Precipitation Mechanism of Carbides in Ti–Mo Bearing High Strength steel [Dissertation], University of Science and Technology Beijing, Beijing, 2014.
      [29]
      F.B. Pickering, Physical Metallurgy and the Design of Steels (Materials Science Series), Applied Science Publishers, London, 1978.

    Catalog


    • /

      返回文章
      返回