Cite this article as: |
Yong Mei, Pu-zhen Shao, Ming Sun, Guo-qin Chen, Murid Hussain, Feng-lei Huang, Qiang Zhang, Xiao-sa Gao, Yin-yin Pei, Su-juan Zhong, and Gao-hui Wu, Deformation treatment and microstructure of graphene-reinforced metalmatrix nanocomposites: A review of graphene post-dispersion, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 888-899. https://doi.org/10.1007/s12613-020-2048-6 |
Graphene/aluminum (Gr/Al) composites have attracted the attention of researchers all over the world due to their excellent properties. However, graphene agglomerates easily because of the van der Waals force between graphite sheets, thereby affecting the performance of the composites. Decreasing the agglomeration of graphene and dispersing it uniformly in the Al matrix is a key challenge. In the preparation process, predispersion treatment and deformation treatment can play important roles in graphene dispersion. Researchers have conducted a series of research and literature reviews of the graphene predispersion and consolidation of composites. However, they paid less attention to post-deformation processing. This review summarizes different deformation treatments involved in the preparation process of Gr/Al composites and the evolution of the microstructure during the process. Research on deformation parameters is expected to further improve the properties of Gr/Al composites and would provide a deep understanding of the strengthening effect of graphene.
[1] |
M.E. Smagorinski, P.G. Tsantrizos, S. Grenier, A. Cavasin, T. Brzezinski, and G. Kim, The properties and microstructure of Al-based composites reinforced with ceramic particles, Mater. Sci. Eng. A, 244(1998), No. 1, p. 86. doi: 10.1016/S0921-5093(97)00830-7
|
[2] |
B.Q. Han, J.Y. Huang, Y.T. Zhu, and E.J. Lavernia, Effect of strain rate on the ductility of a nanostructured aluminum alloy, Scripta Mater., 54(2006), No. 6, p. 1175. doi: 10.1016/j.scriptamat.2005.11.035
|
[3] |
E.S. Caballero, J. Cintas, F.G. Cuevas, J.M. Montes, and F. Ternero, Influence of milling atmosphere on the controlled formation of ultrafine dispersoids in Al-based MMCs, Metals, 6(2016), No. 9, p. 224. doi: 10.3390/met6090224
|
[4] |
N. Chawla and K.K. Chawla, Metal Matrix Composites, 2nd Ed., Springer Science + Business Media, New York, 2013, p. 3.
|
[5] |
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306(2004), No. 5696, p. 666. doi: 10.1126/science.1102896
|
[6] |
C.G. Lee, X.D. Wei, J.W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321(2008), No. 5887, p. 385. doi: 10.1126/science.1157996
|
[7] |
A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett., 8(2008), No. 3, p. 902. doi: 10.1021/nl0731872
|
[8] |
Y.B. Zhang, Y.W. Tan, H.L. Stormer, and P. Kim, Experimental observation of the quantum hall effect and Berry’ s phase in graphene, Nature, 438(2005), No. 7065, p. 201. doi: 10.1038/nature04235
|
[9] |
R.G. Wang, Z. Li, W.B. Liu, W.C. Jiao, L.F. Hao, and F. Yang, Attapulgite–graphene oxide hybrids as thermal and mechanical reinforcements for epoxy composites, Compos. Sci. Technol., 87(2013), p. 29. doi: 10.1016/j.compscitech.2013.08.002
|
[10] |
Y.G. Han, T.Q. Wang, X.X. Gao, T.X. Li, and Q. Zhang, Preparation of thermally reduced graphene oxide and the influence of its reduction temperature on the thermal, mechanical, flame retardant performances of PS nanocomposites, Composites Part A, 84(2016), p. 336. doi: 10.1016/j.compositesa.2016.02.007
|
[11] |
C. Ramirez, P. Miranzo, M. Belmonte, M.I. Osendi, P. Poza, S.M. Vega-Diaz, and M. Terrones, Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets, J. Eur. Ceram. Soc., 34(2014), No. 2, p. 161. doi: 10.1016/j.jeurceramsoc.2013.08.039
|
[12] |
S.F. Bartoluccia, J. Paras, M.A. Rafiee, J. Rafiee, S.L. Lee, D. Kapoor, and N. Koratkar, Graphene–aluminum nanocomposites, Mater. Sci. Eng. A, 528(2011), No. 27, p. 7933. doi: 10.1016/j.msea.2011.07.043
|
[13] |
S.E. Shin, H.J. Choi, J.H. Shin, and D.H. Bae, Strengthening behavior of few-layered graphene/aluminum composites, Carbon, 82(2015), p. 143. doi: 10.1016/j.carbon.2014.10.044
|
[14] |
Y.Y. Jiang, Z.Q. Tan, R. Xu, G.L. Fan, D.B. Xiong, Q. Guo, Y.S. Su, Z.Q. Li, and D. Zhang, Tailoring the structure and mechanical properties of graphene nanosheet/aluminum composites by flake powder metallurgy via shift-speed ball milling, Composites Part A, 111(2018), p. 73. doi: 10.1016/j.compositesa.2018.05.022
|
[15] |
S.E. Shin and D.H. Bae, Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene, Composites Part A, 78(2015), p. 42. doi: https://doi.org/10.1016/j.compositesa.2015.08.001
|
[16] |
P.Z. Shao, W.S. Yang, Q. Zhang, Q.Y. Meng, X. Tan, Z.Y. Xiu, J. Qiao, Z.H. Yu, and G.H. Wu, Microstructure and tensile properties of 5083 Al matrix composites reinforced with graphene oxide and graphene nanoplates prepared by pressure infiltration method, Composites Part A, 109(2018), p. 151. doi: 10.1016/j.compositesa.2018.03.009
|
[17] |
M. Tabandeh-Khorshid, A. Kumar, E. Omrani, C. Kim, and P. Rohatgi, Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites, Composites Part B, 183(2020), art. No. 107664. doi: 10.1016/j.compositesb.2019.107664
|
[18] |
A. Nieto, A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal, Graphene reinforced metal and ceramic matrix composites: A review, Int. Mater. Rev., 62(2017), No. 5, p. 241. doi: 10.1080/09506608.2016.1219481
|
[19] |
F. Chen, N. Gupta, R.K. Behera, and P.K. Rohatgi, Graphene-reinforced aluminum matrix composites: A review of synthesis methods and properties, JOM, 70(2018), No. 6, p. 837. doi: 10.1007/s11837-018-2810-7
|
[20] |
M.X. Li, Y.H. Zhao, L.W. Chen, J.Q. Liang, T. Zhang, and H. Hou, Research progress on preparation technology of graphene-reinforced aluminum matrix composites, Mater. Res. Express, 6(2018), No. 3, art. No. 032002. doi: 10.1088/2053-1591/aaf4a5
|
[21] |
S.C. Tjong, Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets, Mater. Sci. Eng. R, 74(2013), No. 10, p. 281. doi: 10.1016/j.mser.2013.08.001
|
[22] |
P.Z. Shao, G.Q. Chen, B.Y. Ju, W.S. Yang, Q. Zhang, Z.J. Wang, X. Tan, Y.Y. Pei, S.J. Zhong, M. Hussain, and G. Wu, Effect of hot extrusion temperature on graphene nanoplatelets reinforced Al6061 composite fabricated by pressure infiltration method, Carbon, 162(2020), p. 455. doi: 10.1016/j.carbon.2020.02.080
|
[23] |
M. Alipour and R. Eslami-Farsani, Synthesis and characterization of graphene nanoplatelets reinforced AA7068 matrix nanocomposites produced by liquid metallurgy route, Mater. Sci. Eng. A, 706(2017), p. 71. doi: 10.1016/j.msea.2017.08.092
|
[24] |
W.W. Zhou, Y.C. Fan, X.P. Feng, K. Kikuchi, N. Nomura, and A. Kawasaki, Creation of individual few-layer graphene incorporated in an aluminum matrix, Composites Part A, 112(2018), p. 168. doi: 10.1016/j.compositesa.2018.06.008
|
[25] |
W.S. Yang, Q.Q. Zhao, L. Xin, J. Qiao, J.Y. Zou, P.Z. Shao, Z.H. Yu, Q. Zhang, and G.H. Wu, Microstructure and mechanical properties of graphene nanoplates reinforced pure Al matrix composites prepared by pressure infiltration method, J. Alloys Compd., 732(2018), p. 748. doi: 10.1016/j.jallcom.2017.10.283
|
[26] |
R. Xu, Z.Q. Tan, G.L. Fan, G. Ji, D.B. Xiong, Q. Guo, Y.S. Su, Z.Q. Li, and D. Zhang, High-strength CNT/Al–Zn–Mg–Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying, Composites Part A, 111(2018), p. 1. doi: 10.1016/j.compositesa.2018.05.012
|
[27] |
H. Kurita, M. Estili, H. Kwon, T. Miyazaki, W.W. Zhou, J.F. Silvain, and A. Kawasaki, Load-bearing contribution of multi-walled carbon nanotubes on tensile response of aluminum, Composites Part A, 68(2015), p. 133. doi: 10.1016/j.compositesa.2014.09.014
|
[28] |
Z.Y. Liu, B.L. Xiao, W.G. Wang, and Z.Y. Ma, Modelling of carbon nanotube dispersion and strengthening mechanisms in Al matrix composites prepared by high energy ball milling-powder metallurgy method, Composites Part A, 94(2017), p. 189. doi: 10.1016/j.compositesa.2016.11.029
|
[29] |
S.E. Shin, H.J. Choi, J.Y. Hwang, and D.H. Bae, Strengthening behavior of carbon/metal nanocomposites, Sci. Rep., 5(2015), art. No. 16114. doi: 10.1038/srep16114
|
[30] |
Z. Li, Q. Guo, Z.Q. Li, G.L. Fan, D.B. Xiong, Y.S. Su, J. Zhang, and D. Zhang, Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure, Nano Lett., 15(2015), No. 12, p. 8077. doi: 10.1021/acs.nanolett.5b03492
|
[31] |
X.D. Li, Z.H. Xu, and R.Z. Wang, In situ observation of nanograin rotation and deformation in nacre, Nano Lett., 6(2006), No. 10, p. 2301. doi: 10.1021/nl061775u
|
[32] |
U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, and R.O. Ritchie, Bioinspired structural materials, Nat. Mater., 14(2015), No. 1, p. 23. doi: 10.1038/nmat4089
|
[33] |
Z.Y. Liu, B.L. Xiao, W.G. Wang, and Z.Y. Ma, Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing, Carbon, 69(2014), p. 264. doi: 10.1016/j.carbon.2013.12.025
|
[34] |
Z.W. Zhang, Z.Y. Liu, B.L. Xiao, D.R. Ni, and Z.Y. Ma, High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing, Carbon, 135(2018), p. 215. doi: 10.1016/j.carbon.2018.04.029
|
[35] |
F. Khodabakhshi, S.M. Arab, P. Švec, and A.P. Gerlich, Fabrication of a new Al–Mg/graphene nanocomposite by multi-pass friction-stir processing: Dispersion, microstructure, stability, and strengthening, Mater. Charact., 132(2017), p. 92. doi: 10.1016/j.matchar.2017.08.009
|
[36] |
W.T. Sun, X.G. Qiao, M.Y. Zheng, C. Xu, S. Kamado, X.J. Zhao, H.W. Chen, N. Gao, and M.J. Starink, Altered ageing behaviour of a nanostructured Mg–8.2Gd–3.8Y–1.0Zn–0.4Zr alloy processed by high pressure torsion, Acta Mater., 151(2018), p. 260. doi: 10.1016/j.actamat.2018.04.003
|
[37] |
P. Jenei, J. Gubicza, E.Y. Yoon, H.S. Kim, and J.L. Lábár, High temperature thermal stability of pure copper and copper–carbon nanotube composites consolidated by High Pressure Torsion, Composites Part A, 51(2013), p. 71. doi: 10.1016/j.compositesa.2013.04.007
|
[38] |
Y. Huang, P. Bazarnik, D.Q. Wan, D. Luo, P.H.R. Pereira, M. Lewandowska, J. Yao, B.E. Hayden, and T.G. Langdon, The fabrication of graphene-reinforced Al-based nanocomposites using high-pressure torsion, Acta Mater., 164(2019), p. 499. doi: 10.1016/j.actamat.2018.10.060
|
[39] |
L.Y. Zhao, H.M. Lu, and Z.J. Gao, Microstructure and mechanical properties of Al/graphene composite produced by high-pressure torsion, Adv. Eng. Mater., 17(2015), No. 7, p. 976. doi: 10.1002/adem.201400375
|
[40] |
J.C. Li, X.X. Zhang, and L. Geng, Improving graphene distribution and mechanical properties of GNP/Al composites by cold drawing, Mater. Des., 144(2018), p. 159. doi: 10.1016/j.matdes.2018.02.024
|
[41] |
J.M. Hedgepeth, Stress Concentrations in Filamentary Structures, NASA Technical Note D-882, NASA Langley Research Center, Langley Field, VA, 1961.
|
[42] |
M.K. Yeh, N.H. Tai, and J.H. Liu, Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes, Carbon, 44(2006), No. 1, p. 1. doi: 10.1016/j.carbon.2005.07.005
|
[43] |
M.R. Piggott, Load Bearing Fibre Composites, 1st ed., Pergamon, Oxford, 1980, p. 59.
|
[44] |
X. Zhang, S.F. Li, B. Pan, D. Pan, S.Y. Zhou, S.H. Yang, L. Jia, and K. Kondoh, A novel strengthening effect of in-situ nano Al2O3w on CNTs reinforced aluminum matrix nanocomposites and the matched strengthening mechanisms, J. Alloys Compd., 764(2018), p. 279. doi: 10.1016/j.jallcom.2018.06.006
|