Cite this article as: |
Xu-zhong Gong, Jun-qiang Zhang, Zhi Wang, Dong Wang, Jun-hao Liu, Xiao-dong Jing, Guo-yu Qian, and Chuan Wang, Development of calcium coke for CaC2 production using calcium carbide slag and coking coal, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 76-87. https://doi.org/10.1007/s12613-020-2049-5 |
A type of calcium coke was developed for use in the oxy-thermal process of calcium carbide production. The calcium coke was prepared by the co-pyrolysis of coking coal and calcium carbide slag, which is a solid waste generated from the chlor-alkali industry. The characteristics of the calcium cokes under different conditions were analyzed experimentally and theoretically. The results show that the thermal strength of calcium coke increased with the increase in the coking coal proportion, and the waterproof property of calcium coke also increased with increased carbonation time. The calcium coke can increase the contact area of calcium and carbon in the calcium carbide production process. Furthermore, the pore structure of the calcium coke can enhance the diffusion of gas inside the furnace, thus improving the efficiency of the oxy-thermal technology.
[1] |
J.J. Mu and R.A. Hard, A rotary kiln process for making calcium carbide, Ind. Eng. Chem. Res., 26(1987), No. 10, p. 2063. doi: 10.1021/ie00070a022
|
[2] |
D.J. Shi, K. Qiao, and Z.F. Yan, Effect of potassium carbonate on catalytic synthesis of calcium carbide at moderate temperature, Front. Chem. Sci. Eng., 5(2011), No. 3, p. 372. doi: 10.1007/s11705-010-0570-1
|
[3] |
Y. Mi, D.X. Zheng, J. Guo, X.H. Chen, and P. Jin, Assessment of energy use and carbon footprint for low-rank coal-based oxygen-thermal and electro-thermal calcium carbide manufacturing processes, Fuel Process. Technol., 119(2014), p. 305. doi: 10.1016/j.fuproc.2013.10.027
|
[4] |
J. Guo and D.X. Zheng, Thermodynamic analysis of low-rank-coal-based oxygen-thermal acetylene manufacturing process system, Ind. Eng. Chem. Res., 51(2012), No. 41, p. 13414. doi: 10.1021/ie301986q
|
[5] |
J. Guo, D.X. Zheng, X.H. Chen, Y. Mi, and Z.Y. Liu, Chemical reaction equilibrium behaviors of an oxy-thermal carbide furnace reaction system, Ind. Eng. Chem. Res., 52(2013), No. 50, p. 17773. doi: 10.1021/ie4018918
|
[6] |
R.X. Wang, L.M. Ji, Q.Y. Liu, D.X. Zheng, H. Liu, and Z.Y. Liu, Development of auto-thermal production of calcium carbide, CIESC J., 65(2014), No. 7, p. 2417.
|
[7] |
Z.Y. Liu, Q.Y. Liu, and G.D. Li, Method and System for the Production of Calcium Carbide, Word Intellectual Property Organization Patent, Appl. WO/2010/012193, 2010.
|
[8] |
G.D. Li, Q.Y. Liu, and Z.Y. Liu, CaC2 production from pulverized coke and CaO at low temperatures—Reaction mechanisms, Ind. Eng. Chem. Res., 51(2012), No. 33, p. 10742. doi: 10.1021/ie300671w
|
[9] |
Z.K. Li, Z.Y. Liu, R.X. Wang, X.J. Guo, and Q.Y. Liu, Conversion of bio-char to CaC2 at low temperatures-morphology and kinetics, Chem. Eng. Sci., 192(2018), p. 516. doi: 10.1016/j.ces.2018.07.059
|
[10] |
A. Pääkkönen, H. Tolvanen, and L. Kokko, The economics of renewable CaC2 and C2H2 production from biomass and CaO, Biomass Bioenergy, 120(2019), p. 40. doi: 10.1016/j.biombioe.2018.10.020
|
[11] |
G.D. Li, Q.Y. Liu, Z.Y. Liu, Z.C. Zhang, C.Y. Li, and W.Z. Wu, Production of calcium carbide from fine biochars, Angew. Chem. Int. Ed., 49(2010), No. 45, p. 8480. doi: 10.1002/anie.201004169
|
[12] |
G.D. Li, Q.Y. Liu, and Z.Y. Liu, Kinetic behaviors of CaC2 production from coke and CaO, Ind. Eng. Chem. Res., 52(2013), No. 16, p. 5587. doi: 10.1021/ie302816g
|
[13] |
T. Mukaibo and Y. Yamanaka, Calcium carbide. III. Kinetics of the first stage of the reaction of producing calcium carbide under reduced pressure (2–3 mmHg), J. Soc. Chem. Ind., 56(1953), No. 4, p. 313.
|
[14] |
H. Tagawa and H. Sugawara, The kinetics of the formation of calcium carbide in a solid-solid reaction, Bull. Chem. Soc. Jpn., 35(1962), No. 8, p. 1276. doi: 10.1246/bcsj.35.1276
|
[15] |
Q. Hu, D.D. Yao, Y.P. Xie, Y.J. Zhu, H.P. Yang, Y.Q. Chen, and H.P. Chen, Study on intrinsic reaction behavior and kinetics during reduction of iron ore pellets by utilization of biochar, Energy Convers. Manage., 158(2018), p. 1. doi: 10.1016/j.enconman.2017.12.037
|
[16] |
J. Pal, S. Ghorai, and A. Das, Development of carbon composite iron ore micropellets by using the microfines of iron ore and carbon-bearing materials in iron making, Int. J. Miner. Metal. Mater., 22(2015), No. 2, p. 132. doi: 10.1007/s12613-015-1053-7
|
[17] |
S.W. Du, C.P. Yeh, W.H. Chen, C.H. Tsai, and J.A. Lucas, Burning characteristics of pulverized coal within blast furnace raceway at various injection operations and ways of oxygen enrichment, Fuel, 143(2015), p. 98. doi: 10.1016/j.fuel.2014.11.038
|
[18] |
H.P. Tiwari, A. Das, and U. Singh, Novel technique for assessing the burnout potential of pulverized coals/coal blends for blast furnace injection, Appl. Therm. Eng., 130(2018), p. 1279. doi: 10.1016/j.applthermaleng.2017.11.115
|
[19] |
X.Z. Gong, Z.S. Wang, Z. Wang, J.W. Cao, and S. Zhang, Roles of impurities on sintering structure and thermal strength of CaO-containing carbon pellet and the CaO sintering kinetic analysis, Powder Technol., 336(2018), p. 92. doi: 10.1016/j.powtec.2018.05.053
|
[20] |
J.Q. Zhang, Z.S. Wang, T. Li, Z. Wang, S. Zhang, M. Zhong, Y.E. Liu, and X.Z. Gong, Preparation of CaO-containing carbon pellet from recycling of carbide slag: Effects of temperature and H3PO4, Waste Manage., 84(2019), p. 64. doi: 10.1016/j.wasman.2018.11.033
|
[21] |
Y.J. Li, W.J. Wang, X.X. Cheng, M.Y. Su, X.T. Ma, and X. Xie, Simultaneous CO2/HCl removal using carbide slag in repetitive adsorption/desorption cycles, Fuel, 142(2015), p. 21. doi: 10.1016/j.fuel.2014.10.071
|
[22] |
Y.J. Li, M.Y. Su, X. Xie, S.M. Wu, and C.T. Liu, CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis, Appl. Energy, 145(2015), p. 60. doi: 10.1016/j.apenergy.2015.01.061
|
[23] |
R.Y. Sun, Y.J. Li, H.L. Liu, S.M. Wu, and C.M. Lu, CO2 capture performance of calcium-based sorbent doped with manganese salts during calcium looping cycle, Appl. Energy, 89(2012), No. 1, p. 368. doi: 10.1016/j.apenergy.2011.07.051
|
[24] |
H.C. Chen, C.S. Zhao, Y.M. Yang, and P.P. Zhang, CO2 capture and attrition performance of CaO pellets with aluminate cement under pressurized carbonation, Appl. Energy, 91(2012), No. 1, p. 334. doi: 10.1016/j.apenergy.2011.09.032
|
[25] |
R.X Wang, Z.Y. Liu, L.M. Ji, X.J. Guo, X. Lin, J.F. Wu, and Q.Y. Liu, Reaction kinetics of CaC2 formation from powder and compressed feeds, Front. Chem. Sci. Eng., 10(2016), No. 4, p. 517. doi: 10.1007/s11705-016-1585-z
|
[26] |
W. Lv, Z.Q. Sun, and Z.J. Su, Life cycle energy consumption and greenhouse gas emissions of iron pelletizing process in China, a case study, J. Cleaner Prod., 233(2019), p. 1314. doi: 10.1016/j.jclepro.2019.06.180
|
[27] |
S. Purohit, B. Ekman, R. Mejias, G. Brooks, and M.A. Rhamdhani, Solar processing of composite iron ore pellets: Preliminary assessments, J. Cleaner Prod., 205(2018), p. 1017. doi: 10.1016/j.jclepro.2018.09.112
|
[28] |
T.K. Bhattacharya, A. Ghosh, and S.K. Das, Densification of reactive lime from limestone, Ceram. Int., 27(2001), No. 4, p. 455. doi: 10.1016/S0272-8842(00)00101-2
|
[29] |
H.A. Yeprem, Effect of iron oxide addition on the hydration resistance and bulk density of doloma, J. Eur. Ceram. Soc., 27(2007), No. 2-3, p. 1651. doi: 10.1016/j.jeurceramsoc.2006.05.010
|
[30] |
R.G. Guan, W. Li, and B.Q. Li, Effects of Ca-based additives on desulfurization during coal pyrolysis, Fuel, 82(2003), No. 15-17, p. 1961. doi: 10.1016/S0016-2361(03)00188-1
|
[31] |
X. Jia, Q.H. Wang, L. Han, L.M. Cheng, M.X. Fang, Z.Y. Luo, and K.F. Cen, Sulfur transformation during the pyrolysis of coal with the addition of CaSO4 in a fixed-bed reactor, J. Anal. Appl. Pyrolysis, 124(2017), p. 319. doi: 10.1016/j.jaap.2017.01.016
|
[32] |
S.Y. Lin, M. Harada, Y. Suzuki, and H. Hatno, Comparison of pyrolysis products between coal, coal/CaO, and coal/Ca(OH)2 materials, Energy Fuels, 17(2003), No. 3, p. 602. doi: 10.1021/ef020204w
|
[33] |
S.Y. Lin, M. Harada, Y. Suzuki, and H. Hatno, Gasification of organic material/CaO pellets with high-pressure steam, Energy Fuels, 18(2004), No. 4, p. 1014. doi: 10.1021/ef040017t
|
[34] |
G.N. Okolo, R.C. Everson, H.W.J.P. Neomagus, M.J. Roberts, and R. Sakurovs, Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques, Fuel, 141(2015), p. 293. doi: 10.1016/j.fuel.2014.10.046
|
[35] |
Y.B. Yao and D.M. Liu, Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals, Fuel, 95(2012), p. 152. doi: 10.1016/j.fuel.2011.12.039
|