留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 7
Jul.  2020

图(8)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1643
  • HTML全文浏览量:  392
  • PDF下载量:  33
  • 被引次数: 0
Venkateswarlu Badisha, Shabana Shaik, Ravikumar Dumpala, and B. Ratna Sunil, Developing Mg–Zn surface alloy by friction surface allosying: In vitro degradation studies in simulated body fluids, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 962-969. https://doi.org/10.1007/s12613-020-2053-9
Cite this article as:
Venkateswarlu Badisha, Shabana Shaik, Ravikumar Dumpala, and B. Ratna Sunil, Developing Mg–Zn surface alloy by friction surface allosying: In vitro degradation studies in simulated body fluids, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 962-969. https://doi.org/10.1007/s12613-020-2053-9
引用本文 PDF XML SpringerLink
研究论文

摩擦表面合金化法开发一种 Mg–Zn 表面合金:模拟体液中的体外降解研究

  • Research Article

    Developing Mg–Zn surface alloy by friction surface allosying: In vitro degradation studies in simulated body fluids

    + Author Affiliations
    • A new variant of friction-assisted process named friction surface alloying (FSA) for developing surface alloys was demonstrated in the present work. In FSA, the dispersed phase is melted and allowed to react with the matrix material to form an alloy at the surface of a metallic substrate. In the present work, magnesium (Mg) sheets and zinc (Zn) powder were selected, and fine grained (~3.5 μm) Mg–Zn surface alloy with improved hardness was produced by FSA. X-ray diffraction studies confirmed the formation of intermetallic phases of Mg and Zn at the surface. From the in vitro degradation studies carried out by immersing in simulated body fluids, a lower corrosion rate was observed for the Mg–Zn surface alloy compared with pure Mg. The surface morphologies after immersion studies indicated large degraded areas on the base Mg compared with Mg–Zn. The results demonstrate the potential of FSA in developing Mg-based surface alloys without melting the substrate to impart better surface properties.

    • loading
    • [1]
      H. Hermawan, D. Dubé, and D. Mantovani, Developments in metallic biodegradable stents, Acta Biomater., 6(2010), No. 5, p. 1693. doi: 10.1016/j.actbio.2009.10.006
      [2]
      H. Hornberger, S. Virtanen, and A.R. Boccaccini, Biomedical coatings on magnesium alloys - A review, Acta. Biomater., 8(2012), No. 7, p. 2442. doi: 10.1016/j.actbio.2012.04.012
      [3]
      R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, 50(2005), No. 1-2, p. 1. doi: 10.1016/j.mser.2005.07.001
      [4]
      R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, High strain rate superplasticity in a friction stir processed 7075 Al alloy, Scripta Mater., 42(1999), No. 2, p. 163. doi: 10.1016/S1359-6462(99)00329-2
      [5]
      V. Sharma, U. Prakash, and B.V.M. Kumar, Surface composites by friction stir processing: A review, J. Mater. Process. Technol., 224(2015), p. 117. doi: 10.1016/j.jmatprotec.2015.04.019
      [6]
      L.Y. Huang, K.S. Wang, W. Wang, K. Zhao, J. Yuan, K. Qiao, B. Zhang, and J. Cai, Mechanical and corrosion properties of low-carbon steel prepared by friction stir processing, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 202. doi: 10.1007/s12613-019-1725-9
      [7]
      S. Cartigueyen and K. Mahadevan, Effects of heat generation on microstructure and hardness of Cu/SiCp surface composite processed by friction stir processing, Mater. Sci. Forum, 830-831(2015), p. 472. doi: 10.4028/www.scientific.net/MSF.830-831.472
      [8]
      R. Bauri, G.D. Janaki Ram, D. Yadav, and C.N. Shyam Kumar, Effect of process parameters and tool geometry on fabrication of Ni particles reinforced 5083 Al composite by friction stir processing, Mater. Today:Proc., 2(2015), No. 4-5, p. 3203. doi: 10.1016/j.matpr.2015.07.115
      [9]
      B. Ratna Sunil, Different strategies of secondary phase incorporation into metallic sheets by friction stir processing in developing surface composites, Int. J. Mech. Mater. Eng., 11(2016), No. 1, p. 1. doi: 10.1186/s40712-016-0054-2
      [10]
      M.S. Khorrami, M. Kazeminezhad, Y. Miyashita, and A.H. Kokbi, Improvement in the mechanical properties of Al/SiC nanocomposites fabricated by severe plastic deformation and friction stir processing, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 297. doi: 10.1007/s12613-017-1408-3
      [11]
      N. Yuvaraj and S. Aravindan, Comparison studies on mechanical and wear behavior of fabricated aluminum surface nano composites by fusion and solid state processing, Surf. Coat. Technol., 309(2017), p. 309. doi: 10.1016/j.surfcoat.2016.11.076
      [12]
      B. Ratna Sunil, G. Pradeep Kumar Reddy, H. Patle, and R. Dumpala, Magnesium based surface metal matrix composites by friction stir processing, J. Magnes. Alloys, 4(2016), No. 1, p. 52. doi: 10.1016/j.jma.2016.02.001
      [13]
      J. Gandra, H. Krohn, R.M. Miranda, P. Vilaca, L. Quintino, and J.F. dos Santos, Friction surfacing - A review, J. Mater. Process. Technol., 214(2014), No. 5, p. 1062. doi: 10.1016/j.jmatprotec.2013.12.008
      [14]
      J.J.S. Dilip and G.D. Janaki Ram, Microstructures and properties of friction freeform fabricated borated stainless steel, J. Mater. Eng. Perform., 22(2013), No. 10, p. 3034. doi: 10.1007/s11665-013-0605-0
      [15]
      J.J.S. Dilip and G.D. Janaki Ram, Microstructure evolution in aluminum alloy AA 2014 during multi-layer friction deposition, Mater. Charact., 86(2013), p. 146. doi: 10.1016/j.matchar.2013.10.009
      [16]
      J.M. Rodelas, J.C. Lippold, J.R. Rule, and J. Livingston, Friction stir processing as a base metal preparation technique for modification of fusion weld microstructures, [in] Friction Stir Welding and Processing VI, 2011, p. 323.
      [17]
      N. Balasubramanian, R.S. Mishra, and K. Krishnamurthy, Process forces during friction stir channeling in an aluminum alloy, Int. J. Mater. Process. Technol., 211(2011), No. 2, p. 305. doi: 10.1016/j.jmatprotec.2010.10.005
      [18]
      N. Saikrishna, G. Pradeep Kumar Reddy, B. Munirathinam, and B. Ratna Sunil, Influence of bimodal grain size distribution on the corrosion behavior of friction stir processed biodegradable AZ31 magnesium alloy, J. Magnes. Alloys, 4(2016), No. 1, p. 68. doi: 10.1016/j.jma.2015.12.004
      [19]
      T. Kokubo and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27(2006), No. 15, p. 2907. doi: 10.1016/j.biomaterials.2006.01.017
      [20]
      ASTM International, ASTM Standard NACE TM0169/ G31–12a: Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM International, West Conshohocken, 2012.
      [21]
      M.J. Shen, M.F. Zhang, and W.F. Ying, Processing, microstructure and mechanical properties of bimodal size SiCp reinforced AZ31B magnesium matrix composites, J. Magnes. Alloys, 3(2015), No. 2, p. 162. doi: 10.1016/j.jma.2015.05.002
      [22]
      B. Ratna Sunil, T.S. Sampath Kumar, and C. Uday, Bioactive magnesium by friction stir processing, Mater. Sci. Forum, 710(2012), p. 264. doi: 10.4028/www.scientific.net/MSF.710.264
      [23]
      H.E. Fridrich and B.L. Mordike, Magnesium Technology, Springer, Heidelberg, Germany, 2006.
      [24]
      S. Benavides, Y. Li, L.E. Murr, D. Brown, and J.C. McClure, Low-temperature friction-stir welding of 2024 aluminum, Scripta Mater., 41(1999), No. 8, p. 809. doi: 10.1016/S1359-6462(99)00226-2
      [25]
      Y.J. Kwon, I. Shigematsu, and N. Saito, Mechanical properties of fine-grained aluminum alloy produced by friction stir process, Scripta Mater., 49(2003), No. 8, p. 785. doi: 10.1016/S1359-6462(03)00407-X
      [26]
      Z.Y. Ma, R.S. Mishra, and M.W. Mahoney, Superplastic deformation behaviour of friction stir processed 7075Al alloy, Acta Mater., 50(2002), No. 17, p. 4419. doi: 10.1016/S1359-6454(02)00278-1
      [27]
      B. Vandana, P. Syamala, D. Venugopal, S. Sk, B. Venkateswarlu, M. Jagannatham, M. Kolenčík, I. Ramakanth, R. Dumpala, and B. Ratna Sunil, Magnesium/fish bone derived hydroxyapatite composites by friction stir processing: Studies on mechanical behaviour and corrosion resistance, Bull. Mater. Sci., 42(2019), No. 3, p. 122. doi: 10.1007/s12034-019-1799-z
      [28]
      M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, USA, 1999.
      [29]
      S.H.C. Park, Y. Sato, and H. Kokawa, Basal plane texture and flow pattern in friction stir weld of a magnesium alloy, Metall. Mater. Trans. A, 34(2003), No. 4, p. 987. doi: 10.1007/s11661-003-0228-4
      [30]
      N. Saikrishna, G. Pradeep Kumar Reddy, B. Munirathinam, R. Dumpala, M. Jagannatham, and B. Ratna Sunil, An investigation on the hardness and corrosion behavior of MWCNT/Mg composites and grain refined Mg, J. Magnes. Alloys, 6(2018), No. 1, p. 83. doi: 10.1016/j.jma.2017.12.003
      [31]
      H. Wang, Y. Estrin, and Z. Zúberová, Bio-corrosion of a magnesium alloy with different processing histories, Mater. Lett., 62(2008), No. 16, p. 2476. doi: 10.1016/j.matlet.2007.12.052
      [32]
      C. Hoog, N. Birbilis, and Y. Estrin, Corrosion of pure Mg as a function of grain size and processing route, Adv. Eng. Mater., 10(2008), No. 6, p. 579. doi: 10.1002/adem.200800046
      [33]
      G.R. Argade, S.K. Panigrahi, and R.S. Mishra, Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium, Corros. Sci., 58(2012), p. 145. doi: 10.1016/j.corsci.2012.01.021
      [34]
      M. Alvarez-Lopez, M.D. Pereda, J.A. del Valle, M. Fernandez-Lorenzo, M.C. Garcia-Alonso, O.A. Ruano, and M.L. Escudero, Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids, Acta Biomater., 6(2010), No. 5, p. 1763. doi: 10.1016/j.actbio.2009.04.041
      [35]
      E. Mostaed, M. Hashempour, A. Fabrizi, D. Dellasega, M. Bestetti, F. Bonollo, and M. Vedani, Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications, J. Mech. Behav. Biomed. Mater., 37(2014), p. 307. doi: 10.1016/j.jmbbm.2014.05.024
      [36]
      G.B. Hamu, D. Eliezer, and L. Wagner, The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy, J. Alloys Compd., 468(2009), No. 1-2, p. 222. doi: 10.1016/j.jallcom.2008.01.084
      [37]
      N.N. Aung and W. Zhou, Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy, Corros. Sci., 52(2010), No. 2, p. 589. doi: 10.1016/j.corsci.2009.10.018
      [38]
      G.L. Song, A. Atrens, and M. Dargusch, Influence of microstructure on the corrosion of diecast AZ91D, Corros. Sci., 41(1998), No. 2, p. 249. doi: 10.1016/S0010-938X(98)00121-8
      [39]
      M.C. Zhao, M. Liu, G.L. Song, and A. Atrens, Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91, Corros. Sci., 50(2008), No. 7, p. 1939. doi: 10.1016/j.corsci.2008.04.010
      [40]
      R.L. Xin, M.Y. Wang, J.C. Gao, P. Liu, and Q. Liu, Effect of microstructure and texture on corrosion resistance of magnesium alloy, Mater. Sci. Forum, 610-613(2009), p. 1160. doi: 10.4028/www.scientific.net/MSF.610-613.1160
      [41]
      G.L. Song, The effect of texture on the corrosion behavior of AZ31 Mg alloy, JOM, 64(2012), No. 6, p. 671. doi: 10.1007/s11837-012-0341-1
      [42]
      Y.P. Wu, H.Q. Xiong, Y.Z. Joa, S.H. Xie, and G.F. Li, Microstructure, texture and mechanical properties of Mg–8Gd–4Y–1Nd–0.5Zr alloy prepared by pre-deformation annealing, hot compression and ageing, Trans. Nonferrous Met. Soc. China, 29(2019), No. 5, p. 976. doi: 10.1016/S1003-6326(19)65006-5
      [43]
      E. Tolouie and R. Jamaati, Effect of β–Mg17Al12 phase on microstructure, texture and mechanical properties of AZ91 alloy processed by asymmetric hot rolling, Mater. Sci. Eng. A, 738(2018), p. 81. doi: 10.1016/j.msea.2018.09.086

    Catalog


    • /

      返回文章
      返回