留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 7
Jul.  2021

图(5)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  2655
  • HTML全文浏览量:  387
  • PDF下载量:  64
  • 被引次数: 0
Zahra Amirsardari, Akram Dourani, Mohamad Ali Amirifar,  and Nooredin Ghadiri Massoom, Comparative characterization of iridium loading on catalyst assessment under different conditions, Int. J. Miner. Metall. Mater., 28(2021), No. 7, pp. 1233-1239. https://doi.org/10.1007/s12613-020-2058-4
Cite this article as:
Zahra Amirsardari, Akram Dourani, Mohamad Ali Amirifar,  and Nooredin Ghadiri Massoom, Comparative characterization of iridium loading on catalyst assessment under different conditions, Int. J. Miner. Metall. Mater., 28(2021), No. 7, pp. 1233-1239. https://doi.org/10.1007/s12613-020-2058-4
引用本文 PDF XML SpringerLink
研究论文

不同条件下铱负载催化剂性能的比较研究

  • Research Article

    Comparative characterization of iridium loading on catalyst assessment under different conditions

    + Author Affiliations
    • To discuss the potential role of iridium (Ir) nanoparticles loaded under atmospheric and high pressures, we prepared a series of catalysts with the same active phase but different contents of 10wt%, 20wt%, and 30wt% on gamma-alumina for decomposition of hydrazine. Under atmospheric pressure, the performance of the catalyst was better when 30wt% of the Ir nanoparticles was used with chelating agent that had greater selectivity of approximately 27%. The increase in the reaction rate from 175 to 220 h−1 at higher Ir loading (30wt%) was due to a good dispersion of high-number active phases rather than an agglomeration surface. As a satisfactory result of this investigation at high pressure, Ir catalysts with different weight percentages showed the same stability against crushing and activity with a characteristic velocity of approximately 1300 m/s.

    • loading
    • [1]
      I. Ali, K. AlGhamdi, F.T. Al-Wadaani, Advances in iridium nano catalyst preparation, characterization and applications, J. Mol. Liq., 280(2019), p. 274. doi: 10.1016/j.molliq.2019.02.050
      [2]
      P. McRight, C. Popp, C. Pierce, A. Turpin, W. Urbanchock, and M. Wilson, Confidence testing of Shell-405 and S-405 catalysts in a monopropellant hydrazine thruster, [in] 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, 2005.
      [3]
      P.X. Zhang, Y.G. Wang, Y.Q. Huang, T. Zhang, G.S. Wu, and J. Li, Density functional theory investigations on the catalytic mechanisms of hydrazine decompositions on Ir(111), Catal. Today, 165(2011), No. 1, p. 80. doi: 10.1016/j.cattod.2011.01.012
      [4]
      S. Mary, C. Kappenstein, S. Balcon, S. Rossignol, and E. Gengembre, Monopropellant decomposition catalysts. I. Ageing of highly loaded Ir/Al2O3 catalysts in oxygen and steam. Influence of chloride content, Appl. Catal. A, 182(1999), No. 2, p. 317. doi: 10.1016/S0926-860X(99)00019-8
      [5]
      A.E. Makled and H. Belal, Modeling of hydrazine decomposition for monopropellant thrusters, [in] 13th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT-13, Cairo, 2009.
      [6]
      Z. Amirsardari, R.M. Aghdam, M. Salavati-Niasari, and S. Shakhesi, Facile carbothermal reduction synthesis of ZrB2 nanoparticles: The effect of starting precursors, Mater. Manuf. Processes, 31(2016), No. 2, p. 134. doi: 10.1080/10426914.2015.1019119
      [7]
      Z. Amirsardari, R.M. Aghdam, M. Salavati-Niasari, and S. Shakhesi, Preparation and characterization of a novel hetero-nanostructure of zirconium diboride nanoparticle-coated multi-walled carbon nanotubes, RSC Adv., 4(2014), No. 106, p. 61409. doi: 10.1039/C4RA09739D
      [8]
      Z. Amirsardari, R.M. Aghdam, M. Salavati-Niasari, and M.R. Jahannama, The effect of starting precursors on size and shape modification of ZrB2 ceramic nanoparticles, J. Nanosci. Nanotechnol., 15(2015), No. 12, p. 10017. doi: 10.1166/jnn.2015.11587
      [9]
      G. Fujii, D. Goto, H. Kagawa, S. Murayama, K. Kajiwara, H. Ikeda, N. Shinozaki, T. Nagao, N. Morita, and E. Yabuhara, The development results of the long life 1N hydrazine monopropellant thruster, J. Space Technol. Sci., 28(2013), No. 1, p. 1_37.
      [10]
      C.H. Hwang, S.N. Lee, S.W. Baek, C.Y. Han, S.K. Kim, and M.J. Yu, Effects of catalyst bed failure on thermochemical phenomena for a hydrazine monopropellant thruster using Ir/Al2O3 catalysts, Ind. Eng. Chem. Res., 51(2012), No. 15, p. 5382. doi: 10.1021/ie202347f
      [11]
      G. Groppi, G. Airoldi, C. Cristiani, and E. Tronconi, Characteristics of metallic structured catalysts with high thermal conductivity, Catal. Today, 60(2000), No. 1-2, p. 57. doi: 10.1016/S0920-5861(00)00317-5
      [12]
      R.A. Mischke and J.M. Smith, Thermal conductivity of alumina catalyst pellets, Ind. Eng. Chem. Fundamen., 1(1962), No. 4, p. 288. doi: 10.1021/i160004a011
      [13]
      N.P. Padture, Advanced structural ceramics in aerospace propulsion, Nat. Mater., 15(2016), No. 8, p. 804. doi: 10.1038/nmat4687
      [14]
      S. Kang, D. Lee, and S. Kwon, Lanthanum doping for longevity of alumina catalyst bed in hydrogen peroxide thruster, Aerosp. Sci. Technol., 46(2015), p. 197. doi: 10.1016/j.ast.2015.07.003
      [15]
      K.-W. Yao, S. Jaenicke, J.-Y. Lin, and K.L. Tan, Catalytic decomposition of nitrous oxide on grafted CuO/γ-Al2O3 catalysts, Appl. Catal. B, 16(1998), No. 3, p. 291. doi: 10.1016/S0926-3373(97)00086-6
      [16]
      I.J. Jang, H.S. Shin, N.R. Shin, S.H. Kim, S.K. Kim, M.J. Yu, and S.J. Cho, Macroporous–mesoporous alumina supported iridium catalyst for hydrazine decomposition, Catal. Today, 185(2012), No. 1, p. 198. doi: 10.1016/j.cattod.2011.08.034
      [17]
      M.L. Cui, Y.S. Chen, Q.F. Xie, D.P. Yang, and M.Y. Han, Synthesis, properties and applications of noble metal iridium nanomaterials, Coord. Chem. Rev., 387(2019), p. 450. doi: 10.1016/j.ccr.2018.12.008
      [18]
      I. Ali, Z.A. Alothman, and A. Alwarthan, Supra molecular mechanism of the removal of 17-β-estradiol endocrine disturbing pollutant from water on functionalized iron nano particles, J. Mol. Liq., 241(2017), p. 123. doi: 10.1016/j.molliq.2017.06.005
      [19]
      I. Ali, Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: Batch and column operations, J. Mol. Liq., 271(2018), p. 677. doi: 10.1016/j.molliq.2018.09.021
      [20]
      I. Ali, O.M.L. Alharbi, Z.A. Alothman, and A. Alwarthan, Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water, Colloids Surf. B, 171(2018), p. 606. doi: 10.1016/j.colsurfb.2018.07.071
      [21]
      I. Ali, A.A. Basheer, A. Kucherova, N. Memetov, T. Pasko, K. Ovchinnikov, V. Pershin, D. Kuznetsov, E. Galunin, V. Grachev, and A. Tkachev, Advances in carbon nanomaterials as lubricants modifiers, J. Mol. Liq., 279(2019), p. 251. doi: 10.1016/j.molliq.2019.01.113
      [22]
      W. Gao, A. Pei, R.F. Dong, and J. Wang, Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels, J. Am. Chem. Soc., 136(2014), No. 6, p. 2276. doi: 10.1021/ja413002e
      [23]
      R. Vieira, C. Pham-Huu, N. Keller, and M.J. Ledoux, New carbon nanofiber/graphite felt composite for use as a catalyst support for hydrazine catalytic decomposition, Chem. Commun., (2002), No. 9, p. 954. doi: 10.1039/b202032g
      [24]
      V. Prasad and M.S. Vasanthkumar, Iridium-decorated multiwall carbon nanotubes and its catalytic activity with Shell 405 in hydrazine decomposition, J. Nanopart. Res., 17(2015), No. 10, art. No. 398. doi: 10.1007/s11051-015-3199-7
      [25]
      N. Firdous, N.K. Janjua, I. Qazi, and M.H.S. Wattoo, Optimal Co–Ir bimetallic catalysts supported on γ-Al2O3 for hydrogen generation from hydrous hydrazine, Int. J. Hydrogen Energy, 41(2016), No. 2, p. 984. doi: 10.1016/j.ijhydene.2015.10.084
      [26]
      J. Luo, M.M. Maye, V. Petkov, N.N. Kariuki, L.Y. Wang, P. Njoki, D. Mott, Y. Lin, and C.J. Zhong, Phase properties of carbon-supported gold–platinum nanoparticles with different bimetallic compositions, Chem. Mater., 17(2005), No. 12, p. 3086. doi: 10.1021/cm050052t
      [27]
      T. Cordero-Lanzac, R. Palos, J.M. Arandes, P. Castaño, J. Rodríguez-Mirasol, T. Cordero, and J. Bilbao, Stability of an acid activated carbon based bifunctional catalyst for the raw bio-oil hydrodeoxygenation, Appl. Catal. B, 203(2017), p. 389. doi: 10.1016/j.apcatb.2016.10.018
      [28]
      J.N. Hinckel, J.A.R. Jorge, T.G.S. Neto, M.A. Zacharias, and J.A.L. Palandi, Low cost catalysts for hydrazine monopropellant thrusters, [in] 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, Colorado, 2009.
      [29]
      Z.M. Zhang, X. Hu, J.J. Li, G.G. Gao, D.H. Dong, R. Westerhof, S. Hu, J. Xiang, and Y. Wang, Steam reforming of acetic acid over Ni/Al2O3 catalysts: Correlation of nickel loading with properties and catalytic behaviors of the catalysts, Fuel, 217(2018), p. 389. doi: 10.1016/j.fuel.2017.12.114
      [30]
      D.M. Doyle, G. Palumbo, K.T. Aust, A.M. El-Sherik, and U. Erb, The influence of intercrystalline defects on hydrogen activity and transport in nickel, Acta Metall. Mater., 43(1995), No. 8, p. 3027. doi: 10.1016/0956-7151(95)00019-R
      [31]
      Z. Amirsardari, A. Dourani, M.A. Amirifar, N.G. Massoom, and M.R. Jahannama, Controlled attachment of ultrafine iridium nanoparticles on mesoporous aluminosilicate granules with carbon nanotubes and acetyl acetone, Mater. Chem. Phys., 239(2020), art. No. 122015. doi: 10.1016/j.matchemphys.2019.122015
      [32]
      L. Li, X.D. Wang, X.Q. Zhao, M.Y. Zheng, R.H. Cheng, L.X. Zhou, and T. Zhang, Microcalorimetric studies of the iridium catalyst for hydrazine decomposition reaction, Thermochim. Acta, 434(2005), No. 1-2, p. 119. doi: 10.1016/j.tca.2004.12.018
      [33]
      S.G. Pakdehi and M. Rasoolzadeh, Comparison of catalytic behavior of iridium and nickel nanocatalysts for decomposition of hydrazine, Procedia Mater. Sci., 11(2015), p. 749. doi: 10.1016/j.mspro.2015.11.071
      [34]
      D.I. Han, C.Y. Han, and H.D. Shin, Empirical and computational performance prediction for monopropellant hydrazine thruster employed for satellite, J. Spacecraft Rockets, 46(2009), No. 6, p. 1186. doi: 10.2514/1.43739

    Catalog


    • /

      返回文章
      返回