留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 2
Feb.  2021

图(10)

数据统计

分享

计量
  • 文章访问数:  3361
  • HTML全文浏览量:  724
  • PDF下载量:  53
  • 被引次数: 0
Sin-Ling Chiam, Anh Thi Le, Swee-Yong Pung,  and Fei-Yee Yeoh, Effect of pH on the photocatalytic removal of silver ions by β-MnO2 particles, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 325-334. https://doi.org/10.1007/s12613-020-2062-8
Cite this article as:
Sin-Ling Chiam, Anh Thi Le, Swee-Yong Pung,  and Fei-Yee Yeoh, Effect of pH on the photocatalytic removal of silver ions by β-MnO2 particles, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 325-334. https://doi.org/10.1007/s12613-020-2062-8
引用本文 PDF XML SpringerLink
研究论文

pH值对β-MnO2颗粒光催化去除银离子的影响

  • Research Article

    Effect of pH on the photocatalytic removal of silver ions by β-MnO2 particles

    + Author Affiliations
    • The presence of silver ions (Ag(I)) in wastewater has a detrimental effect on living organisms. Removal of soluble silver, especially at low concentrations, is challenging. This paper presents the use of β-MnO2 particles as a photocatalyst to remove Ag(I) ions selectively from aqueous solution at various pH levels. Inductively coupled plasma mass spectrometry (ICP-MS), X-ray diffraction (XRD), field emission electron microscope (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron microscopy (XPS) were employed to determine the removal efficiency and to characterize the deposition of silver onto the surface of β-MnO2 particles. The optimum pH for the removal of Ag(I) ions was at pH 4 with 99% removal efficiency under 1 h of visible light irradiation. This phenomenon can be attributed to the electrostatic attraction between β-MnO2 particles and Ag(I) ions as well as the suppression of electron–hole recombination in the presence of H+ ions.

    • loading
    • [1]
      Q.P. Lu, Z.D. Lu, Y.Z. Lu, L.F. Lv, Y. Ning, H.X. Yu, Y.B. Hou, and Y.D. Yin, Photocatalytic synthesis and photovoltaic application of Ag-TiO2 nanorod composites, Nano Lett., 13(2013), No. 11, p. 5698. doi: 10.1021/nl403430x
      [2]
      X.X. Liang, S.X. Luan, Z.Q. Yin, M. He, C.L. He, L.Z. Yin, Y.F. Zou, Z.X. Yuan, L.X. Li, X. Song, C. Lv, and W. Zhang, Recent advances in the medical use of silver complex, Eur. J. Med. Chem., 157(2018), p. 62. doi: 10.1016/j.ejmech.2018.07.057
      [3]
      Y. Okawa, T. Shimada, and F. Shiba, Formation of gold-silver hollow nanostructure via silver halide photographic processes and application to direct electron transfer biosensor using fructose dehydrogenase, J. Electroanal. Chem., 828(2018), p. 144. doi: 10.1016/j.jelechem.2018.09.044
      [4]
      C.H. Chiang, L.H. Jiang, R.R. Fang, C.L. Chang, Y.P. Wang, and M.T. Hsieh, Copper-Silver Dual-component Metal Electroplating Solution and Electroplating Method for Semiconductor Wire, Google Patents, Appl. 15/801, 2019.
      [5]
      A.K. Clarke, J.M. Lynam, R.J.K. Taylor, and W.P. Unsworth, “Back-to-Front” indole synthesis using silver (i) catalysis: unexpected c-3 pyrrole activation mode supported by DFT, ACS Catal., 8(2018), No. 8, p. 6844. doi: 10.1021/acscatal.8b00745
      [6]
      S.K. Tandon, M. Chatterjee, A. Bhargava, V. Shukla, and V. Bihari, Lead poisoning in Indian silver refiners, Sci. Total Environ., 281(2001), No. 1-3, p. 177. doi: 10.1016/S0048-9697(01)00845-2
      [7]
      S. Langkau and L.A. Tercero Espinoza, Technological change and metal demand over time: What can we learn from the past?, Sustainable Mater. Technol., 16(2018), p. 54. doi: 10.1016/j.susmat.2018.02.001
      [8]
      M.J. Eckelman and T.E. Graedel, Silver emissions and their environmental impacts: a multilevel assessment, Environ. Sci. Technol., 41(2007), No. 17, p. 6283. doi: 10.1021/es062970d
      [9]
      N.R. Panyala, E.M. Peña-Méndez, and J. Havel, Silver or silver nanoparticles: a hazardous threat to the environment and human health?, J. Appl. Biomed., 6(2008), No. 3, p. 117. doi: 10.32725/jab.2008.015
      [10]
      C. Greulich, D. Braun, A. Peetsch, J. Diendorf, B. Siebers, M. Epple, and M. Köller, The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range, RSC Adv., 2(2012), No. 17, p. 6981. doi: 10.1039/c2ra20684f
      [11]
      A. Mackevica, M.E. Olsson, and S.F. Hansen, The release of silver nanoparticles from commercial toothbrushes, J. Hazard. Mater., 322(2017), p. 270. doi: 10.1016/j.jhazmat.2016.03.067
      [12]
      P.L. Drake and K.J. Hazelwood, Exposure-related health effects of silver and silver compounds: a review, Ann. OccuHyg., 49(2005), No. 7, p. 575.
      [13]
      World Health Organization, Drinking Water, World Health Oraganization, 2019, [2019-11-15]. https://www.who.int/news-room/fact-sheets/detail/drinking-water
      [14]
      Y.J. Sun, T. Xiong, Z.L. Ni, J. Liu, F. Dong, W. Zhang, and W.K. Ho, Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration, Appl. Surf. Sci., 358(2015), p. 356. doi: 10.1016/j.apsusc.2015.07.071
      [15]
      H.A. Shawky, Synthesis of ion‐imprinting chitosan/PVA crosslinked membrane for selective removal of Ag(I), J. Appl. Polym. Sci., 114(2019), No. 5, p. 2608.
      [16]
      N. Pourreza, S. Rastegarzadeh, and A. Larki, Nano-TiO2 modified with 2-mercaptobenzimidazole as an efficient adsorbent for removal of Ag (I) from aqueous solutions, J. Ind. Eng. Chem., 20(2014), No. 1, p. 127. doi: 10.1016/j.jiec.2013.04.016
      [17]
      L.E. Barton, M. Auffan, M. Durenkamp, S. McGrath, J.Y. Bottero, and M.R. Wiesner, Wiesner.Monte Carlo simulations of the transformation and removal of Ag. TiO2.and ZnO nanoparticles in wastewater treatment and land application of biosolids, Sci. Total Environ., 511(2015), p. 535. doi: 10.1016/j.scitotenv.2014.12.056
      [18]
      F.W. Sousa, M.J. Sousa, I.R.N. Oliveira, A.G. Oliveira, R.M. Cavalcante, P.B.A. Fechine, V.O.S. Neto, D. de Keukeleire, and R.F. Nascimento, Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory, J. Environ. Manage., 90(2009), No. 11, p. 3340. doi: 10.1016/j.jenvman.2009.05.016
      [19]
      J.G. Dean, F.L. Bosqui, and K.H. Lanouette, Removing heavy metals from waste water, Environ. Sci. Technol., 6(1972), No. 6, p. 518. doi: 10.1021/es60065a006
      [20]
      F.L. Fu and Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92(2011), No. 3, p. 407. doi: 10.1016/j.jenvman.2010.11.011
      [21]
      T.M. Zewail and N.S. Yousef, Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed, Alex. Eng. J., 54(2015), No. 1, p. 83. doi: 10.1016/j.aej.2014.11.008
      [22]
      M. Harper and J.M. Siegel, Comparison of discharge silver concentrations from electrolytic plating and metallic replacement silver recovery units, J. Air Waste Manage., 53(2013), No. 4, p. 434.
      [23]
      S. Acevedo, M.A. Ranaudo, G. Escobar, L.Gutiérrez, and P. Ortega, Adsorption of asphaltenes and resins on organic and inorganic substrates and their correlation with precipitation problems in production well tubing, Fuel, 74(1995), No. 4, p. 595. doi: 10.1016/0016-2361(95)98363-J
      [24]
      J. Ran, L. Wu, Y.B. He, Z.J. Yang, Y.M. Wang, C.X. Jiang, L. Ge, E. Bakangura, and T.W. Xu, Ion exchange membranes: New developments and applications, J. Membr. Sci., 522(2017), p. 267. doi: 10.1016/j.memsci.2016.09.033
      [25]
      R. Andreozzi, V. Caprio, A. Insola, and R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery, Catal. Today, 53(1999), No. 1, p. 51. doi: 10.1016/S0920-5861(99)00102-9
      [26]
      A. Buthiyappan, A.R.Abdul Aziz, and W.M.A. Wan Daud, Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents, Rev. Chem. Eng., 32(2016), No. 1, p. 1. doi: 10.1515/revce-2015-0034
      [27]
      A.T. Le, S.Y. Pung, S. Sreekantan, A. Matsuda, and D.P. Huynh, Mechanisms of removal of heavy metal ions by ZnO particles, Heliyon, 5(2019), No. 4, p. e01440. doi: 10.1016/j.heliyon.2019.e01440
      [28]
      H. Beuther and R.A. Flinn, Technique for removing metal contaminants from catalysts, Ind. Eng. Chem. Res., 2(1963), No. 1, p. 53. doi: 10.1021/i360005a013
      [29]
      R.B.G. Valt, A.N. Diógenes, L.S. Sanches, N.M.S. Kaminari, M.J.J.S. Ponte, and H.A. Ponte, Acidic removal of metals from fluidized catalytic cracking catalyst waste assisted by electrokinetic treatment, Braz. J. Chem. Eng., 32(2015), No. 2, p. 465. doi: 10.1590/0104-6632.20150322s00003459
      [30]
      H. Hocheng, M. Chakankar, and U. Jadhav, Biohydrometallurgical Recycling of Metals from Industrial Wastes, CRC Press, Taylor Francise, 2017.
      [31]
      B. Bethi, S.H. Sonawane, B.A. Bhanvase, and S.P. Gumfekar, Nanomaterials-based advanced oxidation processes for wastewater treatment: a review, Chem. Eng. Process., 109(2016), p. 178. doi: 10.1016/j.cep.2016.08.016
      [32]
      C. Athanasekou, G.E. Romanos, S.K. Papageorgiou, G.K. Manolis, F. Katsaros, and P. Falaras, Photocatalytic degradation of hexavalent chromium emerging contaminant via advanced titanium dioxide nanostructures, Chem. Eng. J., 318(2017), p. 171. doi: 10.1016/j.cej.2016.06.033
      [33]
      M. Huang, E. Tso, A.K. Datye, M.R. Prairie, and B.M. Stange, Removal of silver in photographic processing waste by TiO2-based photocatalysis, Environ. Sci. Technol., 30(1996), No. 10, p. 3084. doi: 10.1021/es960167l
      [34]
      S. Mahdavi, M. Jalali, and A. Afkhami, Removal of heavy metals from aqueous solutions using Fe3O4, ZnO, and CuO nanoparticles, J. Nanopart. Res, 14(2012), No. 8, p. 846. doi: 10.1007/s11051-012-0846-0
      [35]
      J.M. Liu, Q.C. Zhang, J.C. Yang, H.Y. Ma, M.O. Tade, S.B. Wang, and J. Liu, Facile synthesis of carbon-doped mesoporous anatase TiO2 for the enhanced visible-light driven photocatalysis, Chem. Commun., 50(2014), No. 90, p. 13971. doi: 10.1039/C4CC05544F
      [36]
      S. Mallakpour and F. Motirasoul, Bio-functionalizing of α-MnO2 nanorods with natural L-amino acids: a favorable adsorbent for the removal of Cd (II) ions, Mater. Chem. Phys., 191(2017), p. 188. doi: 10.1016/j.matchemphys.2017.01.040
      [37]
      U.G. Akpan and B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review, J. Hazard. Mater., 170(2009), No. 2-3, p. 520. doi: 10.1016/j.jhazmat.2009.05.039
      [38]
      P.G. Jessop, The utility of carbon dioxide in homogeneously-catalyzed organic synthesis, Stud. Surf. Sci. Catal., 153(2004), p. 355.
      [39]
      W.A. Herrmann and B. Cornils, Aqueous-Phase Organometallic Catalysis: Concepts and Applications, 2nd, Completely Revised and Enlarged Edition, Wiley-VCH, New York, 2006.
      [40]
      Z. Hubicki, M. Wawrzkiewicz, G. Wójcik, D. Kołodyńska, and A. Wołowicz, Ion exchange method for removal and separation of noble metal ions, [in] Ayben Kilislioglu, eds., Ion Exchange-Studies and Applications, Intech, Croatia, 2015.
      [41]
      M.A. Khan, R. Bushra, A. Ahmad, S.A. Nabi, D.A. Khan, and A. Akhtar, Ion exchangers as adsorbents for removing metals from aquatic media, Arch. Environ. Contam. Toxicol., 66(2014), No. 2, p. 259. doi: 10.1007/s00244-013-9970-9
      [42]
      S.J. Li, Z.C. Ma, L. Wang, and J.Z. Liu, Influence of MnO2 on the photocatalytic activity of P-25 TiO2 in the degradation of methyl orange, Sci. China Ser. B, 51(2008), No. 2, p. 179. doi: 10.1007/s11426-007-0100-2
      [43]
      L.G. Devi, N. Kottam, B.N. Murthy, and S.G. Kumar, Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light, J. Mol. Catal. A:Chem., 328(2010), No. 1-2, p. 44. doi: 10.1016/j.molcata.2010.05.021

    Catalog


    • /

      返回文章
      返回