留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 11
Nov.  2020

图(5)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  2090
  • HTML全文浏览量:  515
  • PDF下载量:  67
  • 被引次数: 0
Jing-qun Yin, Zhi-qiang Zou,  and Jun Tian, Preparation of crystalline rare earth carbonates with large particle size from the lixivium of weathered crust elution-deposited rare earth ores, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1482-1488. https://doi.org/10.1007/s12613-020-2066-4
Cite this article as:
Jing-qun Yin, Zhi-qiang Zou,  and Jun Tian, Preparation of crystalline rare earth carbonates with large particle size from the lixivium of weathered crust elution-deposited rare earth ores, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1482-1488. https://doi.org/10.1007/s12613-020-2066-4
引用本文 PDF XML SpringerLink
研究论文

由风化壳淋积型稀土矿的浸出液制备大颗粒晶型稀土碳酸盐

  • Research Article

    Preparation of crystalline rare earth carbonates with large particle size from the lixivium of weathered crust elution-deposited rare earth ores

    + Author Affiliations
    • Crystalline rare-earth (RE) carbonates having large particle size were prepared from the lixivium of weathered crust elution-deposited rare-earth ores using the precipitation method with ammonium bicarbonate as the precipitant. Their chemical composition was studied using elemental and thermogravimetric analyses (TGA), and their structure and morphology were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results demonstrate that the crystalline rare-earth carbonate is a hydrated basic carbonate or oxycarbonate and not astable intermediate carbonate in the process of thermal decomposition. The particle size of crystalline rare-earth carbonates with large particle size is in the range of 50–200 μm. With an RE2O3 content of up to 95wt%, the quality of crystalline rare-earth carbonates is higher compared to the Chinese National Standard (GB/T 28882–2012). The quality of the product is superior to the Chinese National Standard.

    • loading
    • [1]
      G.A. Moldoveanu and V.G. Papangelakis, An overview of rare-earth recovery by ion-exchange leaching from ion-adsorption clays of various origins, Mineral. Mag., 80(2016), No. 1, p. 63. doi: 10.1180/minmag.2016.080.051
      [2]
      Y. Kanazawa and M. Kamitani, Rare earth minerals and resources in the world, J. Alloys Compd., 408-412(2006), p. 1339. doi: 10.1016/j.jallcom.2005.04.033
      [3]
      K.M. Goodenough, F. Wall, and D. Merriman, The rare earth elements: Demand, global resources, and challenges for resourcing future generations, Nat. Resour. Res., 27(2018), No. 2, p. 201. doi: 10.1007/s11053-017-9336-5
      [4]
      R.A. Chi, J. Tian, Z.J. Li, C. Peng, Y.X. Wu, S.R. Li, C.W. Wang, and Z.J. Zhou, Existing state and partitioning of rare earth on weathered ores, J. Rare Earths, 23(2005), No. 6, p. 756.
      [5]
      L.Y. He, T.Z. Feng, S.Y. Fu, and D.X. Zhu, Study on process of extraction of rare earths from the ion-adsorption type rare earth ore ore by (NH4)2SO4 leaching, Chin. Rare Earths, 4(1983), No. 3, p. 1.
      [6]
      G.A. Moldoveanu and V.G. Papangelakis, Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism, Hydrometallurgy, 117-118(2012), p. 71. doi: 10.1016/j.hydromet.2012.02.007
      [7]
      R.A. Chi and J. Tian, Weathered Crust Elution-Deposited Rare Earth Ores, Nova Science Publishers, Inc., New York, 2008.
      [8]
      C. Bazin, K. El-Ouassiti, and V. Ouellet, Sequential leaching for the recovery of alumina from a Canadian clay, Hydrometallurgy, 88(2007), No. 1-4, p. 196. doi: 10.1016/j.hydromet.2007.05.002
      [9]
      Y.X. Li, X.B. He, Z.Y. Gu, and P.G. Hu, Precipitation reaction of RECl3 with NH4HCO3 and co-precipitation behavior of accompanying impurity lons, Chin. Rare Earths, 20(1999), No. 2, p. 19.
      [10]
      J. Tian, J.Q. Yin, K.H. Chen, G.H. Rao, M.T. Jiang, and R.A. Chi, Extraction of rare earths from the leach liquor of the weathered crust elution-deposited rare earth ore with non-precipitation, Int. J. Miner. Process., 98(2011), No. 3-4, p. 125. doi: 10.1016/j.minpro.2010.11.007
      [11]
      R. Chi, Z. Zhou, Z. Xu, G. Zhu, and S. Xu, Solution-chemistry analysis of ammonium bicarbonate consumption in rare-earth-element precipitation, Metall. Mater. Trans. B, 34(2003), No. 5, p. 611. doi: 10.1007/s11663-003-0031-z
      [12]
      R. Chi and Z. Xu, A solution chemistry approach to the study of rare earth element precipitation by oxalic acid, Metall. Mater. Trans. B, 30(1999), No. 2, p. 189. doi: 10.1007/s11663-999-0047-0
      [13]
      Z.Y. Leng, S.Z. Liu, Y. Ma, Y.H. Xu, W.B. Wang, X.K. Hao, Y. Bai, M.Y. Fan, J.M. Huang, and Z. Wu, Crystalline rare earth carbonate precipitating from leaching solution of sulfuric acid calcinating concentrate of rare earth, J. Rare Earths, 21(2000), No. 2, p. 26.
      [14]
      China Ministry of Environmental Protection, Chinese National Standard GB 26451–2011: Emission Standards of Pollutants from Rare Earths Industry, 2011.
      [15]
      D.Q. Li, Chemical engineering problems in hydrometallurgical industry of rare earths, Prog. Chem., 7(1995), No. 3, p. 209.
      [16]
      X.P. Luo, L.P. Zou, P.L. Ma, C.G. Luo, J. Xu, and X.K. Tang, Removing aluminum from a low-concentration lixivium of weathered crust elution-deposited rare earth ore with neutralizing hydrolysis, Rare Met., 36(2017), No. 8, p. 685. doi: 10.1007/s12598-015-0621-3
      [17]
      Z.H. Yu, M. Wang, L.S. Wang, L.S. Zhao, Z.Y. Feng, X. Sun, and X.W. Huang, Preparation of crystalline mixed rare earth carbonates by Mg(HCO3)2 precipitation method, J. Rare Earths, 38(2020), No. 3, p. 292. doi: 10.1016/j.jre.2019.05.006
      [18]
      K. Michiba, T. Tahara, I. Nakai, R. Miyawaki, and S. Matsubara, Crystal structure of hexagonal RE(CO3)OH, Z. Kristallogr., 226(2011), No. 6, p. 518.
      [19]
      Q.H. Yu and X.B. Li, Study on the formation of crystalline rare earth carbonates from rare earth ore leaching liquors, J. Rare Earths, 11(1993), No. 3, p. 223.
      [20]
      J.Q. Yin and S.L. Lu, Preparation of crystalline carbonate rare earth from the controlled-flow rate elution leach liquid of the weathered crust elution-deposited rare earth ore, Hydrometallurgy, 14(1995), No. 4, p. 9.
      [21]
      Y.H. Liu, J. Chen, and D.Q. Li, Application and perspective of ionic liquids on rare earths green separation, Sep. Sci. Technol., 47(2012), No. 2, p. 223. doi: 10.1080/01496395.2011.635171
      [22]
      J. Tian, J.Q. Yin, R.A. Chi, G.H. Rao, M.T. Jiang, and K.X. Ouyang, Kinetics on leaching rare earth from the weathered crust elution-deposited rare earth ores with ammonium sulfate solution, Hydrometallurgy, 101(2010), No. 3-4, p. 166. doi: 10.1016/j.hydromet.2010.01.001
      [23]
      Z.Y. Xu, Y.J. Zhang, Z.Y. Fang, X.B. Yin, and W. Zhu, Controllable synthesis and optical properties of NdOHCO3 dodecahedral microcrystals, Mater. Res. Bull., 45(2010), No. 1, p. 74. doi: 10.1016/j.materresbull.2009.08.014
      [24]
      General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Chinese National Standard GB/T 18882.1–2002: Chemical Analysis Methods for Mixed Rare Earth Oxide of Ion-absorpted Type RE Ore-Determination of Total Rare Earth Contents-Oxalate Gravimetric Method, 2002.
      [25]
      J. Tian, J.Q. Yin, X.K. Tang, J. Chen, X.P. Luo, and G.H. Rao, Enhanced leaching process of a low-grade weathered crust elution-deposited rare earth ore with carboxymethyl sesbania gum, Hydrometallurgy, 139(2013), p. 124. doi: 10.1016/j.hydromet.2013.08.001
      [26]
      A.B. Ali, V. Maisonneuve, S. Houlbert, G. Silly, J.Y. Buzaré, and M. Leblanc, Cation and anion disorder in new cubic rare earth carbonates Na2LiLn(CO3)3 (Ln = Eu-Er, Yb, Lu, Y); synthesis, crystal structures, IR, Raman and NMR characterizations, Solid State Sci., 6(2004), No. 11, p. 1237. doi: 10.1016/j.solidstatesciences.2004.07.002
      [27]
      M.S. Refat, A novel method for the synthesis of rare earth carbonates, Synth. React. Inorg. Met.-Org. Chem., 34(2004), No. 9, p. 1605. doi: 10.1081/SIM-200026601
      [28]
      H.S. Sheu, W.J. Shih, W.T. Chuang, I.F. Li, and C.S. Yeh, Crystal structure and phase transitions of Gd(CO3)OH studied by synchrotron powder diffraction, J. Chin. Chem. Soc., 57(2010), No. 4B, p. 938. doi: 10.1002/jccs.201000130
      [29]
      B. Want, Single crystal growth and characterization of lanthanum–neodymium oxalate octahydrate, J. Cryst. Growth, 335(2011), No. 1, p. 90. doi: 10.1016/j.jcrysgro.2011.08.020
      [30]
      S. Liu and R.J. Ma, Preparation of crystalline precipitation of mixed rare earth carbonates, Chin. J. Nonferrous Met., 8(1998), No. 2, p. 331.
      [31]
      F.B. Gu, Z.H. Wang, D.M. Han, G.S. Guo, and H.Y. Guo, Crystallization of rare earth carbonate nanostructures in the reverse micelle system, Cryst. Growth Des., 7(2007), No. 8, p. 1452. doi: 10.1021/cg060904h
      [32]
      Y.J. Zhang, H.M. He, X.Z. Yang, A. Zheng, and Y. Fan, Morphology-controlled synthesis, characterization, growth mechanism of SmOHCO3 with high uniform size and photoluminescence property of SmOHCO3:Eu3+, Powder Technol., 224(2012), p. 175. doi: 10.1016/j.powtec.2012.02.050
      [33]
      R.L. Frost, Y.F. Xi, R. Scholz, F.M. Belotti, and M.C. Filho, Infrared and Raman spectroscopic characterization of the carbonate mineral weloganite-Sr3Na2Zr(CO3)6·3H2O and in comparison with selected carbonates, J. Mol. Struct., 1039(2013), p. 101. doi: 10.1016/j.molstruc.2013.02.005
      [34]
      N.N. Bushuev and D.S. Zinin, Thermal decomposition features of calcium and rare-earth oxalates, Russ. J. Inorg. Chem., 61(2016), No. 2, p. 161. doi: 10.1134/S0036023616020030
      [35]
      G. Zhan, J.X. Yu, Z.G. Xu, F. Zhou, and R.A. Chi, Kinetics of thermal decomposition of lanthanum oxalate hydrate, Trans. Nonferrous Met. Soc. China, 22(2012), No. 4, p. 925. doi: 10.1016/S1003-6326(11)61266-1
      [36]
      S.H. Yin, G. Lin, S.W. Li, J.H. Peng, and L.B. Zhang, Application of response surface methodology for optimization of parameters for microwave heating of rare earth carbonates, High Temp. Mater. Processes, 35(2016), No. 8, p. 813. doi: 10.1515/htmp-2015-0038
      [37]
      General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China, Chinese National Standard GB/T 28882–2012: Rare Earth Carbonate of Ion-absorpted Type Rare Earth Ore, 2012.

    Catalog


    • /

      返回文章
      返回