Cite this article as: |
Surajit Basak, Prosanta Biswas, Surajit Patra, Himadri Roy, and Manas Kumar Mondal, Effect of TiB2 and Al3Ti on the microstructure, mechanical properties and fracture behaviour of near eutectic Al−12.6Si alloy, Int. J. Miner. Metall. Mater., 28(2021), No. 7, pp. 1174-1185. https://doi.org/10.1007/s12613-020-2070-8 |
A near eutectic Al−12.6Si alloy was developed with 0.0wt%, 2.0wt%, 4.0wt%, and 6.0wt% Al−5Ti−1B master alloy. The microstructural morphology, hardness, tensile strength, elongation, and fracture behaviour of the alloys were studied. The unmodified Al−12.6Si alloy has an irregular needle and plate-like eutectic silicon (ESi) and coarse polygonal primary silicon (PSi) particles in the matrix-like α-Al phase. The PSi, ESi, and α-Al morphology and volume fraction were changed due to the addition of the Al−5Ti−1B master alloy. The hardness, UTS, and elongation improved due to the microstructural modification. Nano-sized in-situ Al3Ti particles and ex-situ TiB2 particles caused the microstructural modification. The fracture images of the developed alloys exhibit a ductile and brittle mode of fracture at the same time. The Al−5Ti−1B modified alloys have a more ductile mode of fracture and more dimples compared to the unmodified alloy.
[1] |
P. Biswas, M.K. Mondal, and D. Mandal, Effect of Mg2Si concentration on the dry sliding wear behavior of Al–Mg2Si composite, J. Tribol., 141(2019), No. 8, art. No. 081601. doi: 10.1115/1.4043779
|
[2] |
P. Biswas, K.D. Prasadu, and M.K. Mondal, Effect of Bi addition on microstructure and mechanical properties of hypereutectic Al−17.6Si alloy, Mater. Res. Express, 6(2019), No. 11, p. 1165b9. doi: 10.1088/2053-1591/ab4d34
|
[3] |
C.L. Li, Y. Pan, T. Lu, L.J. Jing, and J.H. Pi, Effects of Ti and La additions on the microstructures and mechanical properties of B-Refined and Sr-modified Al–11Si alloys, Met. Mater. Int., 24(2018), No. 5, p. 1133. doi: 10.1007/s12540-018-0058-y
|
[4] |
J.H. Zhang, S.M. Xing, X.H. Ao, P. Sun, and R.F. Wang, Effect of Ca modification on the elemental composition, microstructure and tensile properties of Al-7Si-0.3Mg alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1457. doi: 10.1007/s12613-019-1838-1
|
[5] |
R. Ahmad, M.B.A. Asmael, N.R. Shahizan, and S. Gandouz, Reduction in secondary dendrite arm spacing in cast eutectic Al–Si piston alloys by cerium addition, Int. J. Miner. Metall. Mater, 24(2017), No. 1, p. 91. doi: 10.1007/s12613-017-1382-9
|
[6] |
J.S. Rao, J. Zhang, R.X. Liu, J. Zheng, and D.D. Yin, Modification of eutectic Si and the microstructure in an Al-7Si alloy with barium addition, Mater. Sci. Eng. A, 728(2018), p. 72. doi: 10.1016/j.msea.2018.05.010
|
[7] |
K.H. Kim and M.S. Kim, High temperature tensile properties of hypereutectic Al−25Si based alloy, Met. Mater. Int., 24(2018), No. 1, p. 136. doi: 10.1007/s12540-017-6913-4
|
[8] |
J.H. Wang, J.Q. Zhu, Y. Liu, H.P. Peng, and X.P. Su, Effect of spheroidization of eutectic Si on mechanical properties of eutectic Al–Si alloys, J. Mater. Res., 33(2018), No. 12, p. 1773. doi: 10.1557/jmr.2018.144
|
[9] |
B. Hazra, S. Bera, and B.K. Show, Enhanced elevated temperature wear resistance of Al−17Si−5Cu alloy after a novel short duration heat treatment, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 360. doi: 10.1007/s12613-019-1745-5
|
[10] |
P. Biswas, S. Patra, and M.K. Mondal, Effects of Mn addition on microstructure and hardness of Al−12.6Si alloy, IOP Conference Series:Mater. Sci. Eng., 338(2018), No. 12, art. No. 012043.
|
[11] |
P. Biswas, S. Patra, H. Roy, C.S. Tiwary, M. Paliwal, and M.K. Mondal, Effect of Mn addition on the mechanical properties of Al−12.6Si alloy: Role of Al15(MnFe)3Si2 intermetallic and microstructure modification, Met. Mater. Int., 27(2021), p. 1713. doi: 10.1007/s12540-019-00535-5
|
[12] |
Y.H. Zhang, C.Y. Yea, Y.P. Shen, W. Chang, D.H. StJohn, G. Wang, and Q.J. Zhai, Grain refinement of hypoeutectic Al–7wt.%Si alloy induced by an Al–V–B master alloy, J. Alloys Compd., 812(2020), art. No. 152022. doi: 10.1016/j.jallcom.2019.152022
|
[13] |
C.R. Barbosa, G.H. Machado, H.M. Azevedo, F.S. Rocha, J.C. Filho, A.A. Pereira, and O.L. Rocha, Tailoring of processing parameters, dendritic microstructure, Si/intermetallic particles and microhardness in as cast and heat treated samples of Al7Si0.3Mg alloy, Met. Mater. Int., 26(2020), p. 370. doi: 10.1007/s12540-019-00334-y
|
[14] |
Khemraj, A.K. Jha, and S.N. Ojha, Deformation and fracture characteristics of complex Al-Si alloy during high speed forging under different processing conditions, Int. J. Mater. Prod. Technol., 58(2019), No. 1, p. 32. doi: 10.1504/IJMPT.2019.096927
|
[15] |
T. Lu, Y. Pan, J.L. Wu, S.W. Tao, and Y. Chen, Effects of La addition on the microstructure and tensile properties of Al−Si−Cu−Mg casting alloys, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 405. doi: 10.1007/s12613-015-1086-y
|
[16] |
Y.J. Yang, P. Hua, X.F. Li, K. Chen, and W. Zhou, Effect of multipass on microstructure and impact toughness of as-cast Al–20Si alloy via friction stir processing, Phys. Met. Metallogr., 120(2019), No. 11, p. 1226.
|
[17] |
M.J. Wang, K.Q. Hu, G.L. Liu, and X.F. Liu, Synchronous improvement of electrical and mechanical performance of A356 alloy reinforced by boron coupling nano-AlNp, J. Alloys Compd., 814(2020), art. No. 152217. doi: 10.1016/j.jallcom.2019.152217
|
[18] |
M. Nowak, L. Bolzoni, and N. Hari Babu, The effect of Nb–B inoculation on binary hypereutectic and near-eutectic LM13 Al–Si cast alloys, J. Alloys Compd., 641(2015), p. 22. doi: 10.1016/j.jallcom.2015.04.053
|
[19] |
S. Lin, C. Aliravci, and M.O. Pekguleryuz, Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining, Metall. Mater. Trans. A, 38(2007), No. 5, p. 1056. doi: 10.1007/s11661-007-9132-7
|
[20] |
K. Ghedjati, E. Fleury, M.S. Hamani, M. Benchiheub, K. Bouacha, and B. Bolle, Elaboration of AlSi10Mg casting alloys using directional solidification processing, Int. J. Miner. Metall. Mater., 22(2015), No. 5, p. 509. doi: 10.1007/s12613-015-1100-4
|
[21] |
M. Krishnakumar, A. Mohnbabu, and R. Saravanan, Impact of surface alloying of nickel on microstructure, hardness and wear on aluminium–12% silicon alloy, Trans. Indian Inst. Met., 72(2019), No. 9, p. 2395. doi: 10.1007/s12666-019-01692-2
|
[22] |
P. Biswas, R. Bhandari, M.K. Mondal, and D. Mandal, Effect of microstructural morphology on microscale deformation behavior of Al−4.5Cu−2Mg alloy, Arch. Metall. Mater., 63(2018), No. 4, p. 1575.
|
[23] |
R. Bhandari, P. Biswas, M.K. Mondal, and D. Mandal, Finite element analysis of stress-strain localization and distribution in Al−4.5Cu−2Mg alloy, Trans. Nonferrous Met. Soc. China, 28(2018), No. 6, p. 1200. doi: 10.1016/S1003-6326(18)64758-2
|
[24] |
P. Biswas, D. Mandal, and M.K. Mondal, Micromechanical response of Al–Mg2Si composites using approximated representative volume elements (RVEs) model, Mater. Res. Express, 6(2019), No. 11, p. 1165c6. doi: 10.1088/2053-1591/ab4e4f
|
[25] |
Z.H. Gan, H. Wu, Y. Sun, P.H. Jiang, Y. Su, C.D. Wu, and J. Liu, Super-gravity field assisted homogeneous distribution of sub-micron eutectic Si in Al−Si alloy, J. Alloy Compd., 817(2019), art. No. 152701.
|
[26] |
X.C. Xia, Q.F. Zhao, Y.Y. Peng, P. Zhang, L.H. Liu, J. Ding, X.D. Luo, L.S. Wang, L.X. Huang, H.J. Zhang, and X.G. Chen, Precipitation behavior and mechanical performances of A356.2 alloy treated by Al–Sr–La composite refinement-modification agent, J. Alloy Compd., 181(2020), art. No. 1533703.
|
[27] |
H. Kaya and A. Aker, Effect of alloying elements and growth rates on microstructure and mechanical properties in the directionally solidified Al-Si-X alloys, J. Alloys Compd., 694(2017), p. 145. doi: 10.1016/j.jallcom.2016.09.199
|
[28] |
S. Farahany, M.H. Idris, A. Ourdjini, F. Faris, and H. Ghandvar, Evaluation of the effect of grain refiners on the solidification characteristics of an Sr-modified ADC12 die-casting alloy by cooling curve thermal analysis, J. Therm. Anal Calorim., 119(2015), No. 3, p. 1593. doi: 10.1007/s10973-014-4367-1
|
[29] |
A.S. Anasyida, A.R. Daud, and M.J. Ghazali, Dry sliding wear behaviour of Al–12Si–4Mg alloy with cerium addition, Mater. Des., 31(2010), No. 1, p. 365. doi: 10.1016/j.matdes.2009.06.007
|
[30] |
M.A. Easton, M.A. Qian, and D.H. StJohn, Grain refinement in alloys: Novel approaches, [in] K.H. Jurgen Buschow, ed., Encyclopedia of Materials: Science and Technology, Elsevier, Amsterdam; New York, 2011.
|
[31] |
Y.W. Jia, D.H. Wang, Y.N. Fu, A.P. Dong, G.L. Zhu, D. Shu, and B.D. Sun, In situ investigation of the heterogeneous nucleation sequence in Al-15 weight percent Cu alloy inoculated by Al−Ti−B, Metall. Mater Trans., A, 50(2019), No. 4, p. 1795. doi: 10.1007/s11661-019-05144-w
|
[32] |
Z.N. Chen, H.J. Kang, G.H. Fan, J.H. Li, Y.P. Lu, J.C. Jie, Y.B. Zhang, T.J. Li, X.G. Jian, and T.M. Wang, Grain refinement of hypoeutectic Al-Si alloys with B, Acta Mater., 120(2016), p. 168. doi: 10.1016/j.actamat.2016.08.045
|
[33] |
S.A. Kori, V. Auradi, B.S. Murty, and M. Chakraborty, Poisoning and fading mechanism of grain refinement in Al-7Si alloy, Mater. Forum, 29(2005), p. 387.
|
[34] |
P. Srirangam, M.J. Kramer, and S. Shankar, Effect of strontium on liquid structure of Al−Si hypoeutectic alloys using high-energy X-ray diffraction, Acta Mater., 59(2011), No. 2, p. 50.
|
[35] |
Y.F. Han, K. Li, J. Wang, D. Shu, and B.D. Sun, Influence of high-intensity ultrasound on grain refining performance of Al–5Ti–1B master alloy on aluminium, Mater. Sci. Eng. A, 405(2005), No. 1-2, p. 306. doi: 10.1016/j.msea.2005.06.024
|
[36] |
P. Tang, W.F. Li, K. Wang, J. Du, X.Y. Chen, Y.J. Zhao, and W.Z. Li, Effect of Al-Ti-C master alloy addition on microstructures and mechanical properties of cast eutectic Al−Si−Fe−Cu alloy, Mater. Des., 115(2017), p. 147. doi: 10.1016/j.matdes.2016.11.036
|
[37] |
G.S. Vinod Kumar, B.S. Murty, and M. Chakraborty, Grain refinement response of LM25 alloy towards Al–Ti–C and Al–Ti–B grain refiners, J. Alloys Compd., 472(2009), No. 1-2, p. 112. doi: 10.1016/j.jallcom.2008.04.095
|
[38] |
Y. Li, Q.F. Gu, Q. Luo, Y.P. Pang, S.L. Chen, K.C. Chou, X.L. Wang, and Q. Li, Thermodynamic investigation on phase formation in the Al–Si richregion of Al–Si–Ti system, Mater. Des., 102(2016), p. 78. doi: 10.1016/j.matdes.2016.03.144
|
[39] |
B.S. Murty, S.A. Kori, and M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying, Int. Mater. Rev., 47(2002), No. 1, p. 3. doi: 10.1179/095066001225001049
|
[40] |
P. Srirangama, S. Chattopadhyay, A. Bhattachary, S. Nag, J. Kaduk, S. Shankar, R. Banerjee, and T. Shibata, Probing the local atomic structure of Sr-modified Al–Si alloys, Acta Mater., 65(2014), p. 185. doi: 10.1016/j.actamat.2013.10.060
|
[41] |
G.R. Li, H.M. Wang, Y.T. Zhao, D.B. Chen, G. Chen, and X.N. Cheng, Microstructure of in situ Al3Ti/6351Al composites fabricated with electromagnetic stirring and fluxes, Trans. Nonferrous Met. Soc. China, 20(2010), No. 4, p. 577. doi: 10.1016/S1003-6326(09)60181-3
|
[42] |
M.K. Mondal, K. Biswas, and J. Maity, Microstructural characterisation of novel 6351 Al–Al4SiC4 in-situ composite, Mater. Sci. Technol., 29(2013), No. 11, p. 1394. doi: 10.1179/1743284713Y.0000000273
|
[43] |
A.M. Bunn, P. Schumacher, M.A. Kearns, C.B. Boothroyd, and A.L. Greer, Grain refinement by Al–Ti–B alloys in aluminium melts: a study of the mechanisms of poisoning by Zirconium, Mater. Sci. Technol., 15(1999), No. 10, p. 1115. doi: 10.1179/026708399101505158
|
[44] |
Y. Chen, Y. Pan, T. Lu, S.W. Tao, and J.L. Wu, Effects of combinative addition of lanthanum and boron on grain refinement of Al-Si casting alloys, Mater. Des., 64(2014), p. 423. doi: 10.1016/j.matdes.2014.07.068
|