Cite this article as: |
Mahmood Razzaghi, Masoud Kasiri-Asgarani, Hamid Reza Bakhsheshi-Rad, and Hamid Ghayour, In vitro bioactivity and corrosion of PLGA/hardystonite composite-coated magnesium-based nanocomposite for implant applications, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 168-178. https://doi.org/10.1007/s12613-020-2072-6 |
A type of polymer/ceramic coating was introduced on a magnesium-based nanocomposite, and the nanocomposite was evaluated for implant applications. The microstructure, corrosion, and bioactivity of the coated and uncoated samples were assessed. Mechanical alloying followed by sintering was applied to fabricate the Mg–3Zn–0.5Ag–15NiTi nanocomposite substrate. Moreover, different contents of poly(lactic-co-glycolic acid) (PLGA) coatings were studied, and 10wt% of PLGA content was selected. The scanning electron microscopy (SEM) images of the bulk nanocomposite showed an acceptable homogenous dispersion of the NiTi nanoparticles (NPs) in the Mg-based matrix. In the in vitro bioactivity evaluation, following the immersion of the uncoated and coated samples in a simulated body fluid (SBF) solution, the Ca/P atomic ratio demonstrated that the apatite formation amount on the coated sample was greater than that on the uncoated nanocomposite. Furthermore, assessing the corrosion resistance indicated that the coatings on the Mg-based substrate led to a corrosion current density (icorr) that was considerably lower than that of the substrate. Such a condition revealed that the coating would provide an obstacle for the corrosion. Based on this study, the PLGA/hardystonite (HT) composite-coated Mg–3Zn–0.5Ag–15NiTi nanocomposite may be suitably applied as an orthopedic implant biomaterial.
[1] |
D.J. Breen and D.J. Stoker, Titanium lines: A manifestation of metallosis and tissue response to titanium alloy megaprostheses at the knee, Clin. Radiol., 47(1993), No. 4, p. 274. doi: 10.1016/S0009-9260(05)81138-9
|
[2] |
M. Razzaghi, M. Kasiri-Asgarani, H.R. Bakhsheshi-Rad, and H. Ghayour, Microstructure, mechanical properties, and in-vitro biocompatibility of nano-NiTi reinforced Mg–3Zn–0.5Ag alloy: Prepared by mechanical alloying for implant applications, Composites Part B, 190(2020), art. No. 107947. doi: 10.1016/j.compositesb.2020.107947
|
[3] |
M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 27(2006), No. 9, p. 1728. doi: 10.1016/j.biomaterials.2005.10.003
|
[4] |
F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, and F. Feyerabend, Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid State Mater. Sci., 12(2008), No. 5-6, p. 63. doi: 10.1016/j.cossms.2009.04.001
|
[5] |
H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, A. Ourdjini, M. Medraj, M. Daroonparvar, and E. Hamzah, Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys, Mater. Des., 53(2014), p. 283. doi: 10.1016/j.matdes.2013.06.055
|
[6] |
A.V. Koltygin, V.E. Bazhenov, R.S. Khasenova, A.A. Komissarov, A.I. Bazlov, and V.A. Bautin, Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 858. doi: 10.1007/s12613-019-1801-1
|
[7] |
Y.Z. Ma, C.L. Yang, Y.J. Liu, F.S. Yuan, S.S. Liang, H.X. Li, and J.S. Zhang, Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg–xZn–0.2Ca alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1274. doi: 10.1007/s12613-019-1860-3
|
[8] |
Y. Sun, B.P. Zhang, Y. Wang, L. Geng, and X.H. Jiao, Preparation and characterization of a new biomedical Mg–Zn–Ca alloy, Mater. Des., 34(2012), p. 58. doi: 10.1016/j.matdes.2011.07.058
|
[9] |
H.R. Bakhsheshi-Rad, E. Hamzah, M.P. Staiger, G.J. Dias, Z. Hadisi, M. Saheban, and M. Kashefian, Drug release, cytocompatibility, bioactivity, and antibacterial activity of doxycycline loaded Mg–Ca–TiO2 composite scaffold, Mater. Des., 139(2018), p. 212. doi: 10.1016/j.matdes.2017.10.072
|
[10] |
D.R. Monteiro, L.F. Gorup, A.S. Takamiya, A.C. Ruvollo-Filho, E.R. de Camargo, and D.B. Barbosa, The growing importance of materials that prevent microbial adhesion: Antimicrobial effect of medical devices containing silver, Int. J. Antimicrob. Agents, 34(2009), No. 2, p. 103. doi: 10.1016/j.ijantimicag.2009.01.017
|
[11] |
R. Radha and D. Sreekanth, Insight of magnesium alloys and composites for orthopedic implant applications – A review, J. Magnesium Alloys, 5(2017), No. 3, p. 286. doi: 10.1016/j.jma.2017.08.003
|
[12] |
H.X. Li, S.K. Qin, Y.Z. Ma, J. Wang, Y.J. Liu, and J.S. Zhang, Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–Zn–Ca alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 800. doi: 10.1007/s12613-018-1628-1
|
[13] |
A.H.M. Sanchez, B.J.C. Luthringer, F. Feyerabend, and R. Willumeit, Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review, Acta Biomater., 13(2015), p. 16. doi: 10.1016/j.actbio.2014.11.048
|
[14] |
H. Du, Z.J. Wei, X.W. Liu, and E.L. Zhang, Effects of Zn on the microstructure, mechanical property and bio-corrosion property of Mg–3Ca alloys for biomedical application, Mater. Chem. Phys., 125(2011), No. 3, p. 568. doi: 10.1016/j.matchemphys.2010.10.015
|
[15] |
Y.M. Zhu, A.J. Morton, and J.F. Nie, Improvement in the age-hardening response of Mg–Y–Zn alloys by Ag additions, Scripta Mater., 58(2008), No. 7, p. 525. doi: 10.1016/j.scriptamat.2007.11.003
|
[16] |
Q.D. Wang, J. Chen, Z. Zhao, and S.M. He, Microstructure and super high strength of cast Mg–8.5Gd–2.3Y–1.8Ag–0.4Zr alloy, Mater. Sci. Eng. A, 528(2010), No. 1, p. 323. doi: 10.1016/j.msea.2010.09.004
|
[17] |
Ş. Açıkgöz, H. Şevik, and S.C. Kurnaz, Influence of silver addition on the microstructure and mechanical properties of squeeze cast Mg–6Al–1Sn–0.3Mn–0.3Ti, J. Alloys Compd., 509(2011), No. 27, p. 7368. doi: 10.1016/j.jallcom.2011.04.112
|
[18] |
X.B. Zhang, Z.X. Ba, Z.Z. Wang, X.C. He, C. Shen, and Q. Wang, Influence of silver addition on microstructure and corrosion behavior of Mg–Nd–Zn–Zr alloys for biomedical application, Mater. Lett., 100(2013), p. 188. doi: 10.1016/j.matlet.2013.03.061
|
[19] |
M. Mandal, A.P. Moon, G. Deo, C.L. Mendis, and K. Mondal, Corrosion behavior of Mg–2.4Zn alloy micro-alloyed with Ag and Ca, Corros. Sci., 78(2014), p. 172. doi: 10.1016/j.corsci.2013.09.012
|
[20] |
M. Razzaghi, M. Kasiri-Asgarani, H.R. Bakhsheshi-Rad, and H. Ghayour, In vitro degradation, antibacterial activity and cytotoxicity of Mg–3Zn–xAg nanocomposites synthesized by mechanical alloying for implant applications, J. Mater. Eng. Perform., 28(2019), No. 3, p. 1441. doi: 10.1007/s11665-019-03923-5
|
[21] |
V. Kavimani, K.S. Prakash, and T. Thankachan, Experimental investigations on wear and friction behavior of SiC@r-GO reinforced Mg matrix composites produced through solvent-based powder metallurgy, Composites Part B, 162(2019), p. 508. doi: 10.1016/j.compositesb.2019.01.009
|
[22] |
S. Wakeel, V. Manakari, G. Parande, M.S. Kujur, A.A. Khan, and M. Gupta, Synthesis and mechanical response of NiTi SMA nanoparticle reinforced Mg composites synthesized through microwave sintering process, Mater. Today:Proc., 5(2018), No. 14, p. 28203. doi: 10.1016/j.matpr.2018.10.064
|
[23] |
Y.F. Zheng, X.N. Gu, Y.L. Xi, and D.L. Chai, In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy, Acta Biomater., 6(2010), No. 5, p. 1783. doi: 10.1016/j.actbio.2009.10.009
|
[24] |
Z. Esen, TiNi reinforced magnesium composites by powder metallurgy, [in] W.H. Sillekens, S.R. Agnew, N.R. Neelameggham, S.N. Mathaudhu, eds., Magnesium Technology 2011, Springer, Cham, Switzerland, 2011, p. 457.
|
[25] |
W. Guo, H. Kato, S.L. Lü, and S.S. Wu, Porous NiTi particle dispersed Mg–Zn–Ca bulk metallic glass matrix composites, Materials, 11(2018), No. 10, p. 1959. doi: 10.3390/ma11101959
|
[26] |
Z. Esen, The effect of processing routes on the structure and properties of magnesium–TiNi composites, Mater. Sci. Eng. A, 558(2012), p. 632. doi: 10.1016/j.msea.2012.08.065
|
[27] |
Y. Wang, Z.H. Wu, H. Zhou, Z.D. Liao, and H.F. Zhang, Corrosion properties in a simulated body fluid of Mg/β-TCP composites prepared by powder metallurgy, Int. J. Miner. Metall. Mater., 19(2012), No. 11, p. 1040. doi: 10.1007/s12613-012-0667-2
|
[28] |
M.D. Pereda, C. Alonso, L. Burgos-Asperilla, J.A. del Valle, O.A. Ruano, P. Perez, and M.A.F.L. de Mele, Corrosion inhibition of powder metallurgy Mg by fluoride treatments, Acta Biomater., 6(2010), No. 5, p. 1772. doi: 10.1016/j.actbio.2009.11.004
|
[29] |
M.K. Datta, D.-T. Chou, D. Hong, P. Saha, S.J. Chung, B. Lee, A. Sirinterlikci, M. Ramanathan, A. Roy, and P.N. Kumta, Structure and thermal stability of biodegradable Mg–Zn–Ca based amorphous alloys synthesized by mechanical alloying, Mater. Sci. Eng. B, 176(2011), No. 20, p. 1637. doi: 10.1016/j.mseb.2011.08.008
|
[30] |
Y.H. Gao, A. Yerokhin, and A. Matthews, Deposition and evaluation of duplex hydroxyapatite and plasma electrolytic oxidation coatings on magnesium, Surf. Coat. Technol., 269(2015), p. 170. doi: 10.1016/j.surfcoat.2015.01.030
|
[31] |
N. Li and Y.F. Zheng, Novel magnesium alloys developed for biomedical application: A review, J. Mater. Sci. Technol., 29(2013), No. 6, p. 489. doi: 10.1016/j.jmst.2013.02.005
|
[32] |
H.R. Bakhsheshi-Rad, E. Hamzah, M. Daroonparvar, M.A.M. Yajid, and M. Medraj, Fabrication and corrosion behavior of Si/HA nano-composite coatings on biodegradable Mg–Zn–Mn–Ca alloy, Surf. Coat. Technol., 258(2014), p. 1090. doi: 10.1016/j.surfcoat.2014.07.025
|
[33] |
H.R. Bakhsheshi-Rad, E. Hamzah, A.F. Ismail, M. Aziz, M. Kasiri-Asgarani, H. Ghayour, M. Razzaghi, and Z. Hadisi, In vitro corrosion behavior, bioactivity, and antibacterial performance of the silver-doped zinc oxide coating on magnesium alloy, Mater. Corros., 68(2017), No. 11, p. 1228. doi: 10.1002/maco.201709597
|
[34] |
E.V. Parfenov, A. Yerokhin, R.R. Nevyantseva, M.V. Gorbatkov, C.-J. Liang, and A. Matthews, Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling, Surf. Coat. Technol., 269(2015), p. 2. doi: 10.1016/j.surfcoat.2015.02.019
|
[35] |
T. Hanas, T.S.S. Kumar, G. Perumal, and M. Doble, Tailoring degradation of AZ31 alloy by surface pre-treatment and electrospun PCL fibrous coating, Mater. Sci. Eng. C, 65(2016), p. 43. doi: 10.1016/j.msec.2016.04.017
|
[36] |
G.X. Liang and R. Schulz, Synthesis of binary Mg-based alloys by mechanical alloying, J. Metastable Nanocryst. Mater., 12(2002), p. 93.
|
[37] |
E.M. Salleh, S. Ramakrishnan, and Z. Hussain, Synthesis of biodegradable Mg–Zn alloy by mechanical alloying: Effect of milling time, Procedia Chem., 19(2016), p. 525. doi: 10.1016/j.proche.2016.03.048
|
[38] |
D.R. Askeland, P.P. Phulé, W.J. Wright, and D.K. Bhattacharya, The Science and Engineering of Materials, Springer, Dordrecht, 2003.
|
[39] |
ASTM International, ASTM G59-97: Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, ASTM International, West Conshohocken, 2009.
|
[40] |
H.R. Bakhsheshi-Rad, M. Akbari, A.F. Ismail, M. Aziz, Z. Hadisi, E. Pagan, M. Daroonparvar, and X.B. Chen, Coating biodegradable magnesium alloys with electrospun poly-L-lactic acid-åkermanite-doxycycline nanofibers for enhanced biocompatibility, antibacterial activity, and corrosion resistance, Surf. Coat. Technol., 377(2019), art. No. 124898. doi: 10.1016/j.surfcoat.2019.124898
|
[41] |
L. Yang and E.L. Zhang, Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application, Mater. Sci. Eng. C, 29(2009), No. 5, p. 1691. doi: 10.1016/j.msec.2009.01.014
|
[42] |
M.L. Zheludkevich, R. Serra, M.F. Montemor, I.M.M. Salvado, and M.G.S. Ferreira, Corrosion protective properties of nanostructured sol–gel hybrid coatings to AA2024-T3, Surf. Coat. Technol., 200(2006), No. 9, p. 3084. doi: 10.1016/j.surfcoat.2004.09.007
|
[43] |
M. Diba, O.-M. Goudouri, F. Tapia, and A.R. Boccaccini, Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications, Curr. Opin. Solid State Mater. Sci., 18(2014), No. 3, p. 147. doi: 10.1016/j.cossms.2014.02.004
|
[44] |
Z.M. Shi, M. Liu, and A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation, Corros. Sci., 52(2010), No. 2, p. 579. doi: 10.1016/j.corsci.2009.10.016
|
[45] |
B.S. Liu, Y.F. Kuang, Y.S. Chai, D.Q. Fang, M.G. Zhang, and Y.H. Wei, Degradation research of protective coating on AZ91D Mg alloy components via simulated contamination, J. Magnesium Alloys, 4(2016), No. 3, p. 220. doi: 10.1016/j.jma.2016.06.001
|
[46] |
H.R. Bakhsheshi-Rad, E. Hamzah, A.F. Ismail, Z. Sharer, M.R. Abdul-Kadir, M. Daroonparvar, S.N. Saud, and M. Medraj, Synthesis and corrosion behavior of a hybrid bioceramic–biopolymer coating on biodegradable Mg alloy for orthopedic implants, J. Alloys Compd., 648(2015), p. 1067. doi: 10.1016/j.jallcom.2015.07.075
|
[47] |
H.R. Bakhsheshi-Rad, E. Hamzah, A.F. Ismail, M. Daroonparvar, M. Kasiri-Asgarani, S. Jabbarzare, and M. Medraj, Microstructural, mechanical properties and corrosion behavior of plasma sprayed NiCrAlY/nano-YSZ duplex coating on Mg–1.2Ca–3Zn alloy, Ceram. Int., 41(2015), No. 10, p. 15272. doi: 10.1016/j.ceramint.2015.08.025
|
[48] |
J. Degner, F. Singer, L. Cordero, A.R. Boccaccini, and S. Virtanen, Electrochemical investigations of magnesium in DMEM with biodegradable polycaprolactone coating as corrosion barrier, Appl. Surf. Sci., 282(2013), p. 264. doi: 10.1016/j.apsusc.2013.05.115
|
[49] |
H.R. Bakhsheshi-Rad, X.B. Chen, A.F. Ismail, M. Aziz, E. Abdolahi, and F. Mahmoodiyan, Improved antibacterial properties of an Mg–Zn–Ca alloy coated with chitosan nanofibers incorporating silver sulfadiazine multiwall carbon nanotubes for bone implants, Polym. Adv. Technol., 30(2019), No. 5, p. 1333. doi: 10.1002/pat.4563
|
[50] |
H.R. Pant, P. Risal, C.H. Park, L.D. Tijing, Y.J. Jeong, and C.S. Kim, Core–shell structured electrospun biomimetic composite nanofibers of calcium lactate/nylon-6 for tissue engineering, Chem. Eng. J., 221(2013), p. 90. doi: 10.1016/j.cej.2013.01.072
|