留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 10
Oct.  2020

图(4)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  2999
  • HTML全文浏览量:  457
  • PDF下载量:  129
  • 被引次数: 0
Uttam Bhandari, Congyan Zhang, Shengmin Guo, and Shizhong Yang, First-principles study on the mechanical and thermodynamic properties of MoNbTaTiW, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1398-1404. https://doi.org/10.1007/s12613-020-2077-1
Cite this article as:
Uttam Bhandari, Congyan Zhang, Shengmin Guo, and Shizhong Yang, First-principles study on the mechanical and thermodynamic properties of MoNbTaTiW, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1398-1404. https://doi.org/10.1007/s12613-020-2077-1
引用本文 PDF XML SpringerLink
研究论文

MoNbTaTiW的力学和热力学性质的第一性原理研究

  • Research Article

    First-principles study on the mechanical and thermodynamic properties of MoNbTaTiW

    + Author Affiliations
    • Refractory high-entropy alloys (RHEAs) are emerging as new materials for high temperature structural applications because of their stable mechanical and thermal properties at temperatures higher than 2273 K. In this study, the mechanical properties of MoNbTaTiW RHEA are examined by applying calculations based on first-principles density functional theory (DFT) and using a large unit cell with 100 randomized atoms. The phase calculation of MoNbTaTiW with CALPHAD method shows the existence of a stable body-centered cubic structure at a high temperature and a hexagonal closely packed phase at a low temperature. The predicted phase, shear modulus, Young’s modulus, Poisson’s ratio, and hardness values are consistent with available experimental results. The linear thermal expansion coefficient, vibrational entropy, and vibrational heat capacity of MoNbTaTiW RHEA are investigated in accordance with Debye–Grüneisen theory. These results may provide a basis for future research related to the application of RHEAs.

    • loading
    • [1]
      J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
      [2]
      Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90(2007), No. 18, art. No. 181904. doi: 10.1063/1.2734517
      [3]
      M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater., 59(2011), No. 16, p. 6308. doi: 10.1016/j.actamat.2011.06.041
      [4]
      L.H. Wen, H.C. Kou, J.S. Li, H. Chang, X.Y. Xue, and L. Zhou, Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy, Intermetallics, 17(2009), No. 4, p. 266. doi: 10.1016/j.intermet.2008.08.012
      [5]
      C.W. Jung, K. Kang, A. Marshal, K.G. Pradeep, J.-B. Seol, H.M. Lee, and P.-P. Choi, Effects of phase composition and elemental partitioning on soft magnetic properties of AlFeCoCrMn high entropy alloys, Acta Mater., 171(2019), p. 31. doi: 10.1016/j.actamat.2019.04.007
      [6]
      O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(2011), No. 5, p. 698. doi: 10.1016/j.intermet.2011.01.004
      [7]
      Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, and K.F. Yao, Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys, Intermetallics, 84(2017), p. 153. doi: 10.1016/j.intermet.2017.01.007
      [8]
      Z.D. Han, H.W. Luan, X. Liu, N. Chen, X.Y. Li, Y. Shao, and K.F. Yao, Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys, Mater. Sci. Eng. A, 712(2018), p. 380. doi: 10.1016/j.msea.2017.12.004
      [9]
      A. Mishra, G. Priyadarshan, D. Clark, Y. Lu, and R.H. Shi, Theoretical investigations on structural stability and elastic properties of MoNbTaW–X (= Ti/V) high entropy alloys, J. Mater. Sci. Res. Rev., 4(2019), No. 2, p. 1.
      [10]
      J.-O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman, Thermo-Calc & DICTRA, computational tools for materials science, Calphad, 26(2002), No. 2, p. 273. doi: 10.1016/S0364-5916(02)00037-8
      [11]
      H. Larsson, A model for 1D multiphase moving phase boundary simulations under local equilibrium conditions, Calphad, 47(2014), p. 1. doi: 10.1016/j.calphad.2014.06.001
      [12]
      Y. Lederer, C. Toher, K.S. Vecchio, and S. Curtarolo, The search for high entropy alloys: A high-throughput ab-initio approach, Acta Mater., 159(2018), p. 364. doi: 10.1016/j.actamat.2018.07.042
      [13]
      H.H. Mao, H.L. Chen, and Q. Chen, TCHEA1: A thermodynamic database not limited for “high entropy” alloys, J. Phase Equilib. Diffus., 38(2017), p. 353. doi: 10.1007/s11669-017-0570-7
      [14]
      H.L. Chen, H.H. Mao, and Q. Chen, Database development and Calphad calculations for high entropy alloys: Challenges, strategies, and tips, Mater. Chem. Phys., 210(2018), p. 279. doi: 10.1016/j.matchemphys.2017.07.082
      [15]
      M.C. Gao, B. Zhang, S. Yang, and S.M. Guo, Senary refractory high-entropy alloy HfNbTaTiVZr, Metall. Mater. Trans. A, 47(2016), No. 7, p. 3333. doi: 10.1007/s11661-015-3105-z
      [16]
      A. Abu-Odeh, E. Galvan, T. Kirk, H. Mao, Q. Chen, P. Mason, R. Malak, and R. Arróyave, Efficient exploration of the high entropy alloy composition-phase space, Acta Mater., 152(2018), p. 41. doi: 10.1016/j.actamat.2018.04.012
      [17]
      P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., 136(1964), No. 3B, p. B864. doi: 10.1103/PhysRev.136.B864
      [18]
      W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140(1965), No. 4A, p. A1133. doi: 10.1103/PhysRev.140.A1133
      [19]
      U. Bhandari, C.Y. Zhang, and S.Z. Yang, Mechanical and thermal properties of low-density Al20+xCr20−xMo20−yTi20V20+y alloys, Crystals, 10(2020), No. 4, p. 278. doi: 10.3390/cryst10040278
      [20]
      P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50(1994), No. 24, p. 17953. doi: 10.1103/PhysRevB.50.17953
      [21]
      J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 46(1992), No. 11, p. 6671. doi: 10.1103/PhysRevB.46.6671
      [22]
      J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
      [23]
      K.E. Donald, The Art of Computer Programming, Addison Wesley, Boston, 1968.
      [24]
      Y. Le Page and P. Saxe, Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations, Phys. Rev. B, 63(2001), No. 17, art. No. 174103. doi: 10.1103/PhysRevB.63.174103
      [25]
      Y. Le Page and P. Saxe, Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress, Phys. Rev. B, 65(2002), No. 10, art. No. 104104. doi: 10.1103/PhysRevB.65.104104
      [26]
      O.L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids, 24(1963), No. 7, p. 909. doi: 10.1016/0022-3697(63)90067-2
      [27]
      K.W. Andrews, Elastic moduli of polycrystalline cubic metals, J. Phys. D:Appl. Phys., 11(1978), No. 18, p. 2527. doi: 10.1088/0022-3727/11/18/011
      [28]
      F. Drucker, E. Grüneisen, F. Körber, P. Kohnstamm, K. Scheel, E. Schrödinger, F. Simon, J.D. van der Waals, and F. Henning, Thermische Eigenschaften der Stoffe, H. Geiger and K. Scheel, eds., Springer, Berlin, 1926.
      [29]
      B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, and P.C. Schmidt, Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases, Intermetallics, 11(2003), No. 1, p. 23. doi: 10.1016/S0966-9795(02)00127-9
      [30]
      N.W. Ashcroft and N.D. Mermin, Solid State Physics, Saunders College Publishing, Philadelphia, 1976.
      [31]
      X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132(2012), No. 2-3, p. 233. doi: 10.1016/j.matchemphys.2011.11.021
      [32]
      S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109(2011), No. 10, art. No. 103505. doi: 10.1063/1.3587228
      [33]
      Z.J. Wang, Y.H. Huang, Y. Yang, J.C. Wang, and C.T. Liu, Atomic-size effect and solid solubility of multicomponent alloys, Scripta Mater., 94(2015), p. 28. doi: 10.1016/j.scriptamat.2014.09.010
      [34]
      A. Takeuchi and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans., 46(2005), No. 12, p. 2817. doi: 10.2320/matertrans.46.2817
      [35]
      G.H. Gulliver, The quantitative effect of rapid cooling upon the constitution of binary alloys, J. Inst. Met., 9(1913), No. 1, p. 120.
      [36]
      E. Scheil, Bemerkungen zur schichtkristallbildung, Z. Metallkd., 34(1942), No. 3, p. 70.
      [37]
      M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford, 1956.
      [38]
      S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(1954), No. 367, p. 823.
      [39]
      Y.L. Hu, L.H. Bai, Y.G. Tong, D.Y. Deng, X.B. Liang, J. Zhang, Y.J. Li, and Y.X. Chen, First-principle calculation investigation of NbMoTaW based refractory high entropy alloys, J. Alloys Compd., 827(2020), art. No. 153963. doi: 10.1016/j.jallcom.2020.153963
      [40]
      C.T. Liu, J.H. Schneibel, P.J. Maziasz, J.L. Wright, and D.S. Easton, Tensile properties and fracture toughness of TiAl alloys with controlled microstructures, Intermetallics, 4(1996), No. 6, p. 429. doi: 10.1016/0966-9795(96)00047-7
      [41]
      J.H. Luan, Z.B. Jiao, W.H. Liu, Z.P. Lu, W.X. Zhao, and C.T. Liu, Compositional and microstructural optimization and mechanical-property enhancement of cast Ti alloys based on Ti–6Al–4V alloy, Mater. Sci. Eng. A, 704(2017), p. 91. doi: 10.1016/j.msea.2017.08.018
      [42]
      Y.D. Wu, Y.H. Cai, X.H. Chen, T. Wang, J.J. Si, L. Wang, Y.D. Wang, and X.D. Hui, Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys, Mater. Des., 83(2015), p. 651. doi: 10.1016/j.matdes.2015.06.072
      [43]
      C.C. Juan, K.K. Tseng, W.L. Hsu, M.H. Tsai, C.W. Tsai, C.M. Lin, S.K. Chen, S.J. Lin, and J.W. Yeh, Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys, Mater. Lett., 175(2016), p. 284. doi: 10.1016/j.matlet.2016.03.133
      [44]
      D. Nguyen-Manh, M. Mrovec, and S.P. Fitzgerald, Dislocation driven problems in atomistic modelling of materials, Mater. Trans., 49(2008), No. 11, p. 2497. doi: 10.2320/matertrans.MB200827
      [45]
      V. Tvergaard and J.W. Hutchinson, Microcracking in ceramics induced by thermal expansion or elastic anisotropy, J. Am. Ceram. Soc., 71(1988), No. 3, p. 157. doi: 10.1111/j.1151-2916.1988.tb05022.x
      [46]
      J. Lei, S. Guo, E. Khosravi, and S. Yang, The stability and stiffness of TaNbHfZrTi alloy from first principles simulation, [in] Materials Science & Technology 2012 (MS&T'12) Conference Proceedings, Pittsburgh, 2012, p. 196.
      [47]
      F. Birch, Finite elastic strain of cubic crystals, Phys. Rev., 71(1947), No. 11, p. 809. doi: 10.1103/PhysRev.71.809
      [48]
      S. Wang, Y.H. Zhao, H. Hou, Z.Q. Wen, P.L. Zhang, and J.Q. Liang, Effect of anti-site point defects on the mechanical and thermodynamic properties of MgZn2, MgCu2 Laves phases: A first-principle study, J. Solid State Chem., 263(2018), p. 18. doi: 10.1016/j.jssc.2018.04.001

    Catalog


    • /

      返回文章
      返回