Cite this article as: |
Jun-xiang Wang, Ji-guo Tu, Han-dong Jiao, and Hong-min Zhu, Nanosheet-stacked flake graphite for high-performance Al storage in inorganic molten AlCl3−NaCl salt, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1711-1722. https://doi.org/10.1007/s12613-020-2080-6 |
Aluminum storage systems with graphite cathode have been greatly promoting the development of state-of-the-art rechargeable aluminum batteries over the last five years; this is due to the ultra-stable cycling, high capacity, and good safety of the systems. This study discussed the change of electrochemical behaviors caused by the structural difference between flake graphite and expandable graphite, the effects of temperature on the electrochemical performance of graphite in low-cost AlCl3–NaCl inorganic molten salt, and the reaction mechanisms of aluminum complex ions in both graphite materials by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, cyclic voltammetry, and galvanostatic charge−discharge measurements. It was found that flake graphite stacked with noticeably small and thin graphene nanosheets exhibited high capacity and fairly good rate capability. The battery could achieve a high capacity of ~219 mA·h·g−1 over 1200 cycles at a high current density of 5 A·g−1, with Coulombic efficiency of 94.1%. Moreover, the reaction mechanisms are clarified: For the flake graphite with small and thin graphene nanosheets and high mesopore structures, the reaction mechanism consisted of not only the intercalation of
anions between graphene layers but also the adsorption of
anions within mesopores; however, for the well-stacked and highly parallel layered large-size expandable graphite, the reaction mechanism mainly involved the intercalation of
anions.
[1] |
A.K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 144(1997), No. 4, p. 1188. doi: 10.1149/1.1837571
|
[2] |
T. Stephenson, Z. Li, B. Olsen, and D. Mitlin, Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites, Energy Environ. Sci., 7(2014), No. 1, p. 209. doi: 10.1039/C3EE42591F
|
[3] |
X. Pu, L.X. Li, H.Q. Song, C.H. Du, Z.F. Zhao, C.Y. Jiang, G.Z. Cao, W.G. Hu, and Z.L. Wang, A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics, Adv. Mater., 27(2015), No. 15, p. 2472. doi: 10.1002/adma.201500311
|
[4] |
Z. Ali, T.Y. Tang, X.X. Huang, Y.Z. Wang, M. Asif, and Y.L. Hou, Cobalt selenide decorated carbon spheres for excellent cycling performance of sodium ion batteries, Energy Storage Mater., 13(2018), p. 19. doi: 10.1016/j.ensm.2017.12.014
|
[5] |
W.C. Zhang, J.F. Mao, S.A. Li, Z.X. Chen, and Z.P. Guo, Phosphorus-based alloy materials for advanced potassium-ion battery anode, J. Am. Chem. Soc., 139(2017), No. 9, p. 3316. doi: 10.1021/jacs.6b12185
|
[6] |
M.M. Huie, D.C. Bock, E.S. Takeuchi, A.C. Marschilok, and K.J. Takeuchi, Cathode materials for magnesium and magnesium-ion based batteries, Coordin. Chem. Rev., 287(2015), p. 15. doi: 10.1016/j.ccr.2014.11.005
|
[7] |
M. Wang, C.L. Jiang, S.Q. Zhang, X.H. Song, Y.B. Tang, and H.M. Cheng, Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage, Nature Chem., 10(2018), No. 6, p. 667. doi: 10.1038/s41557-018-0045-4
|
[8] |
S. Liu, J.J. Hu, N.F. Yan, G.L. Pan, G.R. Li, and X.P. Gao, Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries, Energy Environ. Sci., 5(2012), No. 12, p. 9743. doi: 10.1039/c2ee22987k
|
[9] |
F. Ambroz, T.J. Macdonald, and T. Nann, Trends in aluminium-based intercalation batteries, Adv. Energy Mater., 7(2017), No. 15, art. No. 1602093. doi: 10.1002/aenm.201602093
|
[10] |
Z.A. Zafar, S. Imtiaz, R. Razaq, S.N. Ji, T.Z. Huang, Z.L. Zhang, Y.H. Huang, and J.A. Anderson, Cathode materials for rechargeable aluminum batteries: Current status and progress, J. Mater. Chem. A, 5(2017), No. 12, p. 5646. doi: 10.1039/C7TA00282C
|
[11] |
Y. Zhang, S.Q. Liu, Y.J. Ji, J.M. Ma, and H.J. Yu, Emerging nonaqueous aluminum-ion batteries: Challenges, status, and perspectives, Adv. Mater., 30(2018), No. 38, art. No. 1706310. doi: 10.1002/adma.201706310
|
[12] |
H.C. Yang, H.C. Li, J. Li, Z.H. Sun, K. He, H.M. Cheng, and F. Li, The rechargeable aluminum battery: Opportunities and challenges, Angew. Chem. Int. Ed., 58(2019), No. 35, p. 11978. doi: 10.1002/anie.201814031
|
[13] |
F. Wu, H.Y. Yang, Y. Bai, and C. Wu, Paving the path toward reliable cathode materials for aluminum-ion batteries, Adv. Mater., 31(2019), No. 16, art. No. 1806510. doi: 10.1002/adma.201806510
|
[14] |
G.L. Holleck, The reduction of chlorine on carbon in AlCl3−KCl−NaCl melts, J. Electrochem. Soc., 119(1972), p. 1158. doi: 10.1149/1.2404432
|
[15] |
N. Jayaprakash, S.K. Das, and L.A. Archer, The rechargeable aluminum-ion battery, Chem. Commun., 47(2011), No. 47, p. 12610. doi: 10.1039/c1cc15779e
|
[16] |
W. Wang, B. Jiang, W.Y. Xiong, H. Sun, Z.S. Lin, L.W. Hu, J.G. Tu, J.G. Hou, H.M. Zhu, and S.Q. Jiao, A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation, Sci. Rep., 3(2013), p. 3383. doi: 10.1038/srep03383
|
[17] |
S. Wang, Z. Yu, J. Tu, J. Wang, D. Tian, Y. Liu, and S. Jiao, A novel aluminum-ion battery: Al/AlCl3−[EMIm]Cl/Ni3S2@graphene, Adv. Energy Mater., 6(2016), No. 13, art. No. 1600137. doi: 10.1002/aenm.201600137
|
[18] |
X.D. Huang, Y. Liu, C. Liu, J. Zhang, O. Noonan, and C.Z. Yu, Rechargeable aluminumselenium batteries with high capacity, Chem. Sci., 9(2018), No. 23, p. 5178. doi: 10.1039/C8SC01054D
|
[19] |
H.C. Li, H.C. Yang, Z.H. Sun, Y. Shi, H.M. Cheng, and F. Li, A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries, Nano Energy, 56(2019), p. 100. doi: 10.1016/j.nanoen.2018.11.045
|
[20] |
H.B. Sun, W. Wang, Z.J. Yu, Y. Yuan, S. Wang, and S.Q. Jiao, A new aluminium-ion battery with high voltage, high safety and low cost, Chem. Commun., 51(2015), No. 59, p. 11892. doi: 10.1039/C5CC00542F
|
[21] |
M.C. Lin, M. Gong, B.G. Lu, Y.P. Wu, D.Y. Wang, M.Y. Guan, M. Angell, C.X. Chen, J. Yang, B.J. Hwang, and H.J. Dai, An ultrafast rechargeable aluminium-ion battery, Nature, 520(2015), No. 7547, p. 325.
|
[22] |
H. Jiao, C. Wang, J. Wang, J. Tu, J. Zhu, and S. Jiao, A novel rechargeable Al ion battery fabricated through molten AlCl3/urea electrolytes, Chem. Commun., 53(2017), p. 2331. doi: 10.1039/C6CC09825H
|
[23] |
X.Z. Yu, B. Wang, D.C. Gong, Z. Xu, and B.G. Lu, Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries, Adv. Mater., 29(2017), No. 4, art. No. 1604118. doi: 10.1002/adma.201604118
|
[24] |
H. Chen, H.Y. Xu, S.Y. Wang, T.Q. Huang, J.B. Xi, S.Y. Cai, F. Guo, Z. Xu, W.W. Gao, and C. Gao, Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life, Sci. Adv., 3(2017), No. 12, p. 7233. doi: 10.1126/sciadv.aao7233
|
[25] |
P. Wang, H.S. Chen, N. Li, X.Y. Zhang, S.Q. Jiao, W.L. Song, and D.N. Fang, Dense graphene papers: Toward stable and recoverable Al-ion battery cathodes with high volumetric and areal energy and power density, Energy Storage Mater., 13(2018), p. 103. doi: 10.1016/j.ensm.2018.01.001
|
[26] |
Z.J. Yu, S.Q. Jiao, S.J. Li, X.D. Chen, W.L. Song, T. Teng, J.G. Tu, H.S. Chen, G.H. Zhang, and D.N. Fang, Flexible stable solid-state Al-ion batteries, Adv. Funct. Mater., 29(2019), No. 1, art. No. 1806799. doi: 10.1002/adfm.201806799
|
[27] |
Z.J. Yu, S.Q. Jiao, J.G. Tu, W.L. Song, H.P. Lei, H.D. Jiao, H. Chen, and D.N. Fang, Gel electrolytes with wide potential window for high-rate Al-ion batteries, J. Mater. Chem. A, 7(2019), No. 35, p. 20348. doi: 10.1039/C9TA06815E
|
[28] |
J.G. Tu, J.X. Wang, S.J. Li, W.L. Song, M.Y. Wang, H.M. Zhu, and S.Q. Jiao, High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes, Nanoscale, 11(2019), p. 12537. doi: 10.1039/C9NR03112J
|
[29] |
J.X. Wang, J.G. Tu, H.P. Lei, and H.M. Zhu, The effect of graphitization degree of carbonaceous material on the electrochemical performance for aluminum-ion batteries, RSC Adv., 9(2019), No. 67, p. 38990. doi: 10.1039/C9RA07234A
|
[30] |
R.D. Mckerracher, A. Holland, A. Cruden, and R.G.A. Wills, Comparison of carbon materials as cathodes for the aluminium-ion battery, Carbon, 144(2019), p. 333. doi: 10.1016/j.carbon.2018.12.021
|
[31] |
B.S. Del Duca, Electrochemical behavior of the aluminum electrode in molten salt electrolytes, J. Electrochem. Soc., 118(1971), No. 3, p. 405. doi: 10.1149/1.2408069
|
[32] |
Y. Song, S.Q. Jiao, J.G. Tu, J.X. Wang, Y.J. Liu, H.D. Jiao, X.H. Mao, Z.C. Guo, and D.J. Fray, A long-life Al ion battery based on inorganic molten salt electrolyte, J. Mater. Chem. A, 5(2017), No. 3, p. 1282. doi: 10.1039/C6TA09829K
|
[33] |
J.G. Tu, S.B. Wang, S.J. Li, C. Wang, D.B. Song, and S.Q. Jiao, The effects of anions behaviors on electrochemical properties of Al/graphite rechargeable aluminum-ion battery via molten AlCl3-NaCl liquid electrolyte, J. Electrochem. Soc., 164(2017), No. 13, p. A3292. doi: 10.1149/2.1761713jes
|
[34] |
C.F. Liao, Y.F. Jiao, X. Wang, B.Q. Cai, Q.C. Sun, and H. Tang, Electrical conductivity optimization of the Na3AlF6−Al2O3−Sm2O3 molten salts system for Al−Sm intermediate binary alloy production, Int. J. Miner. Metall. Mater., 24(2017), No. 9, p. 1034. doi: 10.1007/s12613-017-1493-3
|
[35] |
J. Wang, X. Zhang, W.Q. Chu, S.Q. Liu, and H.J. Yu, A sub-100°C aluminum ion battery based on a ternary inorganic molten salt, Chem. Commun., 55(2019), No. 15, p. 2138. doi: 10.1039/C8CC09677E
|
[36] |
D.H. Tian, Z.C. Han, M.Y. Wang, and S.Q. Jiao, Direct electrochemical N-doping to carbon paper in Molten LiCl−KCl−Li3N, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1687. doi: 10.1007/s12613-020-2026-z
|
[37] |
S. Reich and C. Thomsen, Raman spectroscopy of graphite, Philos. Trans. R. Soc. Lond. A, 362(2004), No. 1824, p. 2271. doi: 10.1098/rsta.2004.1454
|
[38] |
A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143(2007), No. 1-2, p. 47. doi: 10.1016/j.ssc.2007.03.052
|
[39] |
K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, and R. Car, Raman spectra of graphite oxide and functionalized graphene sheets, Nano Lett., 8(2008), No. 1, p. 36. doi: 10.1021/nl071822y
|
[40] |
Z.G. Chen, Y.X. Gu, L.Y. Hu, W. Xiao, X.H. Mao, H. Zhu, and D.H. Wang, Synthesis of nanostructured graphite via molten salt reduction of CO2 and SO2 at a relatively low temperature, J. Mater. Chem. A, 5(2017), p. 20603. doi: 10.1039/C7TA06590F
|
[41] |
L.G. Cançado, A. Jorio, and M.A. Pimenta, Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size, Phys. Rev. B, 76(2007), No. 6, art. No. 064304. doi: 10.1103/PhysRevB.76.064304
|
[42] |
A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, and C. Casiraghi, Probing the nature of defects in graphene by Raman spectroscopy, Nano Lett., 12(2012), No. 8, p. 3925. doi: 10.1021/nl300901a
|
[43] |
M. Angell, C.J. Pan, Y.M. Rong, C.Z. Yuan, M.C. Lin, B.J. Hwang, and H.J. Dai, High efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analogue electrolyte, PNAS, 114(2017), No. 5, p. 834. doi: 10.1073/pnas.1619795114
|
[44] |
X.Z. Dong, H.Y. Xu, H. Chen, L.Y. Wang, J.Q. Wang, W.Z. Fang, C. Chen, M. Salman, Z. Xu, and C. Gao, Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery, Carbon, 148(2019), p. 134. doi: 10.1016/j.carbon.2019.03.080
|