留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 7
Jul.  2021

图(7)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  3504
  • HTML全文浏览量:  756
  • PDF下载量:  134
  • 被引次数: 0
Sheng-hua Yin, Lei-ming Wang, Xun Chen, and Ai-xiang Wu, Agglomeration and leaching behaviors of copper oxides with different chemical binders, Int. J. Miner. Metall. Mater., 28(2021), No. 7, pp. 1127-1134. https://doi.org/10.1007/s12613-020-2081-5
Cite this article as:
Sheng-hua Yin, Lei-ming Wang, Xun Chen, and Ai-xiang Wu, Agglomeration and leaching behaviors of copper oxides with different chemical binders, Int. J. Miner. Metall. Mater., 28(2021), No. 7, pp. 1127-1134. https://doi.org/10.1007/s12613-020-2081-5
引用本文 PDF XML SpringerLink
研究论文

不同化学结合剂对铜氧化物的团聚和浸出行为

  • Research Article

    Agglomeration and leaching behaviors of copper oxides with different chemical binders

    + Author Affiliations
    • The chemical binder is one of the critical factors affecting ore agglomeration behavior and leaching efficiency. In this study, we investigated the effect of the type of binder and mass fraction of the H2SO4 solution used on the curing, soaking, and leaching behavior of agglomerations. The results revealed that Portland cement (3CaO·SiO2, 2CaO·SiO2, and 3CaO·Al2O3) was the optimal binder for obtaining a well-shaped, stable agglomeration structure. A higher extraction rate was achieved when using Portland cement than that obtained using sodium silicate, gypsum, or acid-proof cement. An excessive geometric mean size is not conducive to obtaining well-shaped agglomerations and desirable porosity. Using computed tomography (CT) and MATLAB, the porosity of two-dimensional CT images in sample concentrations L1–L3 was observed to increase at least 4.5vol% after acid leaching. Ore agglomerations began to be heavily destroyed and even to disintegrate when the sulfuric acid solution concentration was higher than 30 g/L, which was caused by the excessive accumulation of reaction products and residuals.

    • loading
    • [1]
      J. Petersen, Heap leaching as a key technology for recovery of values from low-grade ores—A brief overview, Hydrometallurgy, 165(2016), p. 206. doi: 10.1016/j.hydromet.2015.09.001
      [2]
      S.H. Yin, L.M. Wang, A.X. Wu, X. Chen, and R.F. Yan, Research progress in enhanced bioleaching of copper sulfides under the intervention of microbial communities, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1337. doi: 10.1007/s12613-019-1826-5
      [3]
      C.M. Ai, P.P. Sun, A.X. Wu, X. Chen, and C. Liu, Accelerating leaching of copper ore with surfactant and the analysis of reaction kinetics, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 274. doi: 10.1007/s12613-019-1735-7
      [4]
      L.M. Wang, S.H. Yin, A.X. Wu, and W. Chen, Synergetic bioleaching of copper sulfides using mixed microorganisms and its community structure succession, J. Cleaner Prod., 245(2020), art. No. 118689. doi: 10.1016/j.jclepro.2019.118689
      [5]
      S.H. Yin, L.M. Wang, E. Kabwe, X. Chen, R.F. Yan, K. An, L. Zhang, and A.X. Wu, Copper bioleaching in China: Review and prospect, Minerals, 8(2018), No. 2, p. 32. doi: 10.3390/min8020032
      [6]
      P.J. van Staden and J. Petersen, The effects of simulated stacking phenomena on the percolation leaching of crushed ore, Part 1: Segregation, Miner. Eng., 128(2018), p. 202. doi: 10.1016/j.mineng.2018.08.045
      [7]
      P.J. van Staden and J. Petersen, The effects of simulated stacking phenomena on the percolation leaching of crushed ore, Part 2: Stratification, Miner. Eng., 131(2019), p. 216. doi: 10.1016/j.mineng.2018.11.021
      [8]
      L.M. Wang, S.H. Yin, A.X. Wu, and W. Chen, Effect of stratified stacks on extraction and surface morphology of copper sulfides, Hydrometallurgy, 191(2020), art. No. 105226. doi: 10.1016/j.hydromet.2019.105226
      [9]
      A.X. Wu, S.H. Yin, W.Q. Qin, J.S. Liu, and G.Z. Qiu, The effect of preferential flow on extraction and surface morphology of copper sulphides during heap leaching, Hydrometallurgy, 95(2009), No. 1-2, p. 76. doi: 10.1016/j.hydromet.2008.04.017
      [10]
      P.D. Chamberlin, Agglomeration: Cheap insurance for good recovery when heap leaching gold and silver ores, Min. Eng., 38(1986), No. 12, p. 1105.
      [11]
      L.M. Wang, S.H. Yin, and A.X. Wu, Visualization of flow behavior in ore-segregated packed beds with fine interlayers, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 900. doi: 10.1007/s12613-020-2059-3
      [12]
      J.M. Lu, D. Dreisinger, and P. West-Sells, Acid curing and agglomeration for heap leaching, Hydrometallurgy, 167(2017), p. 30. doi: 10.1016/j.hydromet.2016.10.019
      [13]
      S.H. Yin, L.M. Wang, X. Chen, and A.X. Wu, Effect of ore size and heap porosity on capillary process inside leaching heap, Trans. Nonferrous Met. Soc. China, 26(2016), No. 3, p. 835. doi: 10.1016/S1003-6326(16)64174-2
      [14]
      I.M.S.K. Ilankoon and S.J. Neethling, Inter-particle liquid spread pertaining to heap leaching using UV fluorescence based image analysis, Hydrometallurgy, 183(2019), p. 175. doi: 10.1016/j.hydromet.2018.12.007
      [15]
      I.M.S.K. Ilankoon and S.J. Neethling, The effect of particle porosity on liquid holdup in heap leaching, Miner. Eng., 45(2013), p. 73. doi: 10.1016/j.mineng.2013.01.016
      [16]
      H.J. Heinen, Percolation leaching of clayey gold–silver ores, Nevada bureau of mines and geology, [in] Report 36, Papers Given at the Precious-Metals Symposium, Sparks, Nevada, 1980, p. 87.
      [17]
      P.D. Chamberlin, Heap leaching and pilot testing of gold and silver ore, [in] Precious Metals Symposium, Sparks, Nevada, 1980, p. 77.
      [18]
      N. Dhawan, M.S. Safarzadeh, J.D. Miller, M.S. Moats, and R.K. Rajamani, Crushed ore agglomeration and its control for heap leach operations, Miner. Eng., 41(2013), p. 53. doi: 10.1016/j.mineng.2012.08.013
      [19]
      D.F. Xu, L.X. Liu, K. Quast, J. Addai-Mensah, and D.J. Robinson, Effect of nickel laterite agglomerate properties on their leaching performance, Adv. Powder Technol., 24(2013), No. 4, p. 750. doi: 10.1016/j.apt.2013.03.013
      [20]
      S.C. Bouffard, Agglomeration for heap leaching: Equipment design, agglomerate quality control, and impact on the heap leach process, Miner. Eng., 21(2008), No. 15, p. 1115. doi: 10.1016/j.mineng.2008.02.010
      [21]
      K.A. Lewandowski and S.K. Kawatra, Binders for heap leaching agglomeration, Min. Metall. Explor., 26(2009), No. 1, p. 1.
      [22]
      K.A. Lewandowski and S.K. Kawatra, Polyacrylamide as an agglomeration additive for copper heap leaching, Int. J. Miner. Process., 91(2009), No. 3-4, p. 88. doi: 10.1016/j.minpro.2009.01.004
      [23]
      P. Kodali, T. Depci, N. Dhawan, X.M. Wang, C.L. Lin, and J.D. Miller, Evaluation of stucco binder for agglomeration in the heap leaching of copper ore, Miner. Eng., 24(2011), No. 8, p. 886. doi: 10.1016/j.mineng.2011.03.024
      [24]
      C. Carlesi, E. Cortes, G. Dibernardi, J. Morales, and E. Muñoz, Ionic liquids as additives for acid leaching of copper from sulfidic ores, Hydrometallurgy, 161(2016), p. 29. doi: 10.1016/j.hydromet.2016.01.012
      [25]
      R. Hecker, P.D. Fawell, and A. Jefferson, The agglomeration of high molecular mass polyacrylamide in aqueous solutions, J. Appl. Polym. Sci., 70(1998), No. 11, p. 2241. doi: 10.1002/(SICI)1097-4628(19981212)70:11<2241::AID-APP18>3.0.CO;2-7
      [26]
      J.D. Miller, X.M. Wang, J.Q. Jin, and K. Shrimali, Interfacial water structure and the wetting of mineral surfaces, Int. J. Miner. Process., 156(2016), p. 62. doi: 10.1016/j.minpro.2016.02.004
      [27]
      Y. Wang, C.L. Lin, and J.D. Miller, 3D image segmentation for analysis of multisize particles in a packed particle bed, Powder Technol., 301(2016), p. 160. doi: 10.1016/j.powtec.2016.05.012
      [28]
      B.H. Yang, A.X. Wu, G.A. Narsilio, X.X. Miao, and S.Y. Wu, Use of high-resolution X-ray computed tomography and 3D image analysis to quantify mineral dissemination and pore space in oxide copper ore particles, Int. J. Miner. Metall. Mater., 24(2017), No. 9, p. 965. doi: 10.1007/s12613-017-1484-4
      [29]
      Y.F. Zhou, Q. Shi, Z.L. Huang, J.D. Wang, and Y.R. Yang, Particle agglomeration and control of gas-solid fluidized bed reactor with liquid bridge and solid bridge coupling actions, Chem. Eng. J., 330(2017), p. 840. doi: 10.1016/j.cej.2017.07.117
      [30]
      G.R. Wang, H.Y. Yang, Y.Y. Liu, L.L. Tong, and A. Auwalu, Study on the mechanical activation of malachite and the leaching of complex copper ore in the Luanshya mining area, Zambia, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 292. doi: 10.1007/s12613-019-1856-z
      [31]
      T. Vethosodsakda, M.L. Free, A. Janwong, and M.S. Moats, Evaluation of liquid retention capacity measurements as a tool for estimating optimal ore agglomeration moisture content, Int. J. Miner. Process., 119(2013), p. 58. doi: 10.1016/j.minpro.2012.12.005
      [32]
      A. Majdi, M. Amini, and A.A. Chermahini, An investigation on mechanism of acid drain in heap leaching structures, J. Hazard. Mater., 165(2009), No. 1-3, p. 1098. doi: 10.1016/j.jhazmat.2008.10.104
      [33]
      S.M. Raj Kumar and R. Malayalamurthi, Agglomeration and sizing of rolling particles in the sago sizing mechanism, Powder Technol., 320(2017), p. 428. doi: 10.1016/j.powtec.2017.07.066
      [34]
      S. Panda, A. Akcil, N. Pradhan, and H. Deveci, Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology, Bioresour. Technol., 196(2015), p. 694. doi: 10.1016/j.biortech.2015.08.064
      [35]
      N. Habbache, N. Alane, S. Djerad, and L. Tifouti, Leaching of copper oxide with different acid solutions, Chem. Eng. J., 152(2009), No. 2-3, p. 503. doi: 10.1016/j.cej.2009.05.020
      [36]
      I.M.S.K. Ilankoon, S.J. Neethling, Z.B. Huang, and Z.M. Cheng, Improved inter-particle flow models for predicting heap leaching hydrodynamics, Miner. Eng., 111(2017), p. 108. doi: 10.1016/j.mineng.2017.06.004
      [37]
      S.H. Yin, L.M. Wang, A.X. Wu, M.L. Free, and E. Kabwe, Enhancement of copper recovery by acid leaching of high-mud copper oxides: A case study at Yangla Copper Mine, China, J. Cleaner Prod., 202(2018), p. 321. doi: 10.1016/j.jclepro.2018.08.122
      [38]
      E. Hoummady, F. Golfier, M. Cathelineau, L. Truche, N. Durupt, J.J. Blanvillain, J. Neto, and E. Lefevre, A multi-analytical approach to the study of uranium-ore agglomerate structure and porosity during heap leaching, Hydrometallurgy, 171(2017), p. 33. doi: 10.1016/j.hydromet.2017.04.011
      [39]
      R. Mejdoub, H. Hammi, M. Khitouni, J.J. Suñol, and A. M'nif, The effect of prolonged mechanical activation duration on the reactivity of Portland cement: Effect of particle size and crystallinity changes, Constr. Build. Mater., 152(2017), p. 1041. doi: 10.1016/j.conbuildmat.2017.07.008
      [40]
      S.H. Yin, L.M. Wang, A.X. Wu, E. Kabwe, X. Chen, and R.F. Yan, Copper recycle from sulfide tailings using combined leaching of ammonia solution and alkaline bacteria, J. Cleaner Prod., 189(2018), p. 746. doi: 10.1016/j.jclepro.2018.04.116
      [41]
      X.D. Hao, Y.L. Liang, H.Q. Yin, L.Y. Ma, Y.H. Xiao, Y.Z. Liu, G.Z. Qiu, and X.D. Liu, The effect of potential heap construction methods on column bioleaching of copper flotation tailings containing high levels of fines by mixed cultures, Miner. Eng., 98(2016), p. 279. doi: 10.1016/j.mineng.2016.07.015

    Catalog


    • /

      返回文章
      返回