留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 11
Nov.  2021

图(15)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  2848
  • HTML全文浏览量:  567
  • PDF下载量:  62
  • 被引次数: 0
Lin-ping Wu, Guang-ping Huang, Chao-shi Hu,  and Wei Victor Liu, Effects of cellulose nanocrystals on the acid resistance of cementitious composites, Int. J. Miner. Metall. Mater., 28(2021), No. 11, pp. 1745-1758. https://doi.org/10.1007/s12613-020-2087-z
Cite this article as:
Lin-ping Wu, Guang-ping Huang, Chao-shi Hu,  and Wei Victor Liu, Effects of cellulose nanocrystals on the acid resistance of cementitious composites, Int. J. Miner. Metall. Mater., 28(2021), No. 11, pp. 1745-1758. https://doi.org/10.1007/s12613-020-2087-z
引用本文 PDF XML SpringerLink
研究论文

纤维素纳米晶对胶凝复合材料耐酸性能的影响

  • Research Article

    Effects of cellulose nanocrystals on the acid resistance of cementitious composites

    + Author Affiliations
    • Acid mine drainage presents an important threat to cementitious structures. This study is aimed at investigating the effect of cellulose nanocrystals (CNCs) on the acid resistance of cementitious composites. CNCs were added to mortar mixtures as additives at cement volume ratios of 0.2vol%, 0.4vol%, 1.0vol%, and 1.5vol%. After 28 d of standard curing, the samples were immersed in a sulfuric acid with a pH value of 2 for 75 d. The unconfined compressive strength (UCS) test, the density, water absorption, void volume test, and thermogravimetric analysis were carried out to investigate the properties of CNC mixtures before sulfuric acid immersion. It was found that the addition of CNC reduced the volume of permeable voids and increased the hydration degree and mechanical strength of the samples. Changes in mass and length were monitored during immersion to evaluate the acid resistance of mixtures. The mixture with 0.4vol% CNC showed a reduced mass change and length change indicating its improved acid resistance.

    • loading
    • [1]
      S.H. Yin, Y.J. Shao, A.X. Wu, Z.Y. Wang, and L.H. Yang, Assessment of expansion and strength properties of sulfidic cemented paste backfill cored from deep underground stopes, Constr. Build. Mater., 230(2020), art. No. 116983. doi: 10.1016/j.conbuildmat.2019.116983
      [2]
      C.L. Yang and Z.M. Wang, Surface pre-grouting and freezing for shaft sinking in aquifer formations, Mine Water Environ., 24(2005), No. 4, p. 209. doi: 10.1007/s10230-005-0097-8
      [3]
      E. De Souza, J.F. Archibald, and A. Dirige, Economics and perspectives of underground backfill practices in Canadian mining, [in] 105th Annual General Meeting of the Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, 2003.
      [4]
      H. Yu, L. Wu, W.V. Liu, and Y. Pourrahimian, Effects of fibers on expansive shotcrete mixtures consisting of calcium sulfoaluminate cement, ordinary Portland cement, and calcium sulfate, J. Rock Mech. Geotech. Eng., 10(2018), No. 2, p. 212. doi: 10.1016/j.jrmge.2017.12.001
      [5]
      V. Zivica and A. Bajza, Acidic attack of cement based materials—A review.: Part 1. Principle of acidic attack, Constr. Build. Mater., 15(2001), No. 8, p. 331. doi: 10.1016/S0950-0618(01)00012-5
      [6]
      E.J. Reardon, An ion interaction model for the determination of chemical equilibria in cement/water systems, Cem. Concr. Res., 20(1990), No. 2, p. 175. doi: 10.1016/0008-8846(90)90070-E
      [7]
      L.S. Vélez-Pérez, J. Ramirez-Nava, G. Hernández-Flores, O. Talavera-Mendoza, C. Escamilla-Alvarado, H.M. Poggi-Varaldo, O. Solorza-Feria, and J.A. López-Díaz, Industrial acid mine drainage and municipal wastewater co-treatment by dual-chamber microbial fuel cells, Int. J. Hydrogen Energy, 45(2020), No. 26, p. 13757. doi: 10.1016/j.ijhydene.2019.12.037
      [8]
      K.K. Kefeni and B.B. Mamba, Evaluation of charcoal ash nanoparticles pollutant removal capacity from acid mine drainage rich in iron and sulfate, J. Cleaner Prod., 251(2020), art. No. 119720. doi: 10.1016/j.jclepro.2019.119720
      [9]
      G. Kalyoncu Ergüler, Investigation the applicability of eggshell for the treatment of a contaminated mining site, Miner. Eng., 76(2015), p. 10. doi: 10.1016/j.mineng.2015.02.002
      [10]
      S.N. Jones and B. Cetin, Remediation of acid mine drainages with recycled concrete aggregates, [in] Geotechnical Frontiers 2017, Orlando, 2017, p. 450.
      [11]
      H.F. Yuan, P. Dangla, P. Chatellier, and T. Chaussadent, Degradation modeling of concrete submitted to biogenic acid attack, Cem. Concr. Res., 70(2015), p. 29. doi: 10.1016/j.cemconres.2015.01.002
      [12]
      S.M. Joorabchian, Durability of Concrete Exposed to Sulfuric Acid Attack [Dissertation], Ryerson University, Toronto, 2010.
      [13]
      E. Tajuelo Rodriguez, K. Garbev, D. Merz, L. Black, and I.G. Richardson, Thermal stability of C–S–H phases and applicability of Richardson and Groves’ and Richardson C–(A)–S–H(I) models to synthetic C–S–H, Cem. Concr. Res., 93(2017), p. 45. doi: 10.1016/j.cemconres.2016.12.005
      [14]
      I.K. Jeon, A. Qudoos, S.H. Jakhrani, H.G. Kim, and J.S. Ryou, Investigation of sulfuric acid attack upon cement mortars containing silicon carbide powder, Powder Technol., 359(2020), p. 181. doi: 10.1016/j.powtec.2019.10.026
      [15]
      H.W. Dorner and R.E. Beddoe, Prognosis of concrete corrosion due to acid attack, [in] 9th International Conference on Durability of Building Materials and Components, Brisbane, Australia, 2002.
      [16]
      A. Allahverdi and F. Škvára, Acidic corrosion of hydrated cement based materials. Part 1. Mechanism of the phenomenon, Ceram. Silik., 44(2000), No. 3, p. 114.
      [17]
      T. Gutberlet, H. Hilbig, and R.E. Beddoe, Acid attack on hydrated cement—Effect of mineral acids on the degradation process, Cem. Concr. Res., 74(2015), p. 35. doi: 10.1016/j.cemconres.2015.03.011
      [18]
      M. Amin, Performance of Concrete with Blended Binders in Sulfuric Acid and Ammonium Sulphate Solutions [Dissertation], University of Manitoba, Manitoba, 2017, p. 106.
      [19]
      L.P. Wu, C.S. Hu, and W. Victor Liu, The sustainability of concrete in sewer tunnel—A narrative review of acid corrosion in the city of Edmonton, Canada, Sustainability, 10(2018), No. 2, art. No. 517. doi: 10.3390/su10020517
      [20]
      S. Aydın, H. Yazıcı, H. Yiğiter, and B. Baradan, Sulfuric acid resistance of high-volume fly ash concrete, Build. Environ., 42(2007), No. 2, p. 717. doi: 10.1016/j.buildenv.2005.10.024
      [21]
      M. Mahdikhani, O. Bamshad, and M. Fallah Shirvani, Mechanical properties and durability of concrete specimens containing nano silica in sulfuric acid rain condition, Constr. Build. Mater., 167(2018), p. 929. doi: 10.1016/j.conbuildmat.2018.01.137
      [22]
      Y.F. Fan, S.Y. Zhang, Q. Wang, and S.P. Shah, The effects of nano-calcined kaolinite clay on cement mortar exposed to acid deposits, Constr. Build. Mater., 102(2016), p. 486. doi: 10.1016/j.conbuildmat.2015.11.016
      [23]
      A.M. Diab, H.E. Elyamany, A.E.M. Abd Elmoaty, and M.M. Sreh, Effect of nanomaterials additives on performance of concrete resistance against magnesium sulfate and acids, Constr. Build. Mater., 210(2019), p. 210. doi: 10.1016/j.conbuildmat.2019.03.099
      [24]
      A. Dufresne, Nanocellulose: A new ageless bionanomaterial, Mater. Today, 16(2013), No. 6, p. 220. doi: 10.1016/j.mattod.2013.06.004
      [25]
      M.R. Dousti, Y. Boluk, and V. Bindiganavile, The effect of cellulose nanocrystal (CNC) particles on the porosity and strength development in oil well cement paste, Constr. Build. Mater., 205(2019), p. 456. doi: 10.1016/j.conbuildmat.2019.01.073
      [26]
      Y.Z. Cao, P. Zavaterri, J. Youngblood, R. Moon, and J. Weiss, The influence of cellulose nanocrystal additions on the performance of cement paste, Cem. Concr. Compos., 56(2015), p. 73. doi: 10.1016/j.cemconcomp.2014.11.008
      [27]
      D. Barnat-Hunek, M. Szymańska-Chargot, M. Jarosz-Hadam, and G. Łagód, Effect of cellulose nanofibrils and nanocrystals on physical properties of concrete, Constr. Build. Mater., 223(2019), p. 1. doi: 10.1016/j.conbuildmat.2019.06.145
      [28]
      A. Balea, E. Fuente, A. Blanco, and C. Negro, Nanocelluloses: natural-based materials for fiber-reinforced cement composites. A critical review, Polymers, 11(2019), No. 3, art. No. 518. doi: 10.3390/polym11030518
      [29]
      J. Goncalves, M. El-Bakkari, Y. Boluk, and V. Bindiganavile, Cellulose nanofibres (CNF) for sulphate resistance in cement based systems, Cem. Concr. Compos., 99(2019), p. 100. doi: 10.1016/j.cemconcomp.2019.03.005
      [30]
      ASTM International, ASTM C136/C136M–14: Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, 2014.
      [31]
      ACI Committee, 506R-16: Guide to Shotcrete, American Concrete Institute, Farmington Hills, 2016.
      [32]
      Y.Z. Cao, N.N. Tian, D. Bahr, P.D. Zavattieri, J. Youngblood, R.J. Moon, and J. Weiss, The influence of cellulose nanocrystals on the microstructure of cement paste, Cem. Concr. Compos., 74(2016), p. 164. doi: 10.1016/j.cemconcomp.2016.09.008
      [33]
      Y.Z. Cao, P. Zavattieri, J. Youngblood, R. Moon, and J. Weiss, The relationship between cellulose nanocrystal dispersion and strength, Constr. Build. Mater., 119(2016), p. 71. doi: 10.1016/j.conbuildmat.2016.03.077
      [34]
      D. Mazlan, S. Krishnan, M.F.M. Din, C. Tokoro, N.H.A. Khalid, I.S. Ibrahim, H. Takahashi, and D. Komori, Effect of cellulose nanocrystals extracted from oil palm empty fruit bunch as green admixture for mortar, Sci. Rep., 10(2020), No. 1, art. No. 6412. doi: 10.1038/s41598-020-63575-7
      [35]
      ASTM International, ASTM C19/C192M–16a: Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, 2016.
      [36]
      A. Mignon, J. Vermeulen, D. Snoeck, P. Dubruel, S. Van Vlierberghe, and N. De Belie, Mechanical and self-healing properties of cementitious materials with pH-responsive semi-synthetic superabsorbent polymers, Mater. Struct., 50(2017), art. No. 238. doi: 10.1617/s11527-017-1109-4
      [37]
      H. Kim, K.M.K. Swamy, N. Kwon, Y. Kim, S. Park, and J. Yoon, Colorimetric detection of thiophenol based on a phenolphthalein derivative and its application as a molecular logic gate, ChemPhysChem, 18(2017), No. 13, p. 1752. doi: 10.1002/cphc.201601348
      [38]
      L. Khalafi, S. Kashani, and J. Karimi, Molecular recognition: Detection of colorless compounds based on color change, J. Chem. Educ., 93(2016), No. 2, p. 376. doi: 10.1021/acs.jchemed.5b00232
      [39]
      ASTM International, ASTM C642–13: Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International, West Conshohocken, 2013.
      [40]
      G.P. Huang, D. Pudasainee, R. Gupta, and W. Victor Liu, Hydration reaction and strength development of calcium sulfoaluminate cement-based mortar cured at cold temperatures, Constr. Build. Mater., 224(2019), p. 493. doi: 10.1016/j.conbuildmat.2019.07.085
      [41]
      ASTM International, ASTM C39/C39M−18: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, 2018.
      [42]
      M. Nematzadeh and S. Fallah-Valukolaee, Erosion resistance of high-strength concrete containing forta-Ferro fibers against sulfuric acid attack with an optimum design, Constr. Build. Mater., 154(2017), p. 675. doi: 10.1016/j.conbuildmat.2017.07.180
      [43]
      H. Siad, M. Lachemi, M. Sahmaran, and K.M.A. Hossain, Effect of glass powder on sulfuric acid resistance of cementitious materials, Constr. Build. Mater., 113(2016), p. 163. doi: 10.1016/j.conbuildmat.2016.03.049
      [44]
      ASTM, ASTM C597–16: Standard Test Method for Pulse Velocity Through Concrete, ASTM International, West Conshohocken, 2016.
      [45]
      L.P. Wu, C.S. Hu, and W. Victor Liu, Effects of pozzolans on acid resistance of shotcrete for sewer tunnel rehabilitation, J. Sustainable Cem. Based Mater., 8(2019), No. 1, p. 55. doi: 10.1080/21650373.2018.1519645
      [46]
      V.G. Papadakis, C.G. Vayenas, and M.N. Fardis, Physical and chemical characteristics affecting the durability of concrete, ACI Mater. J., 88(1991), No. 2, p. 186.
      [47]
      S. Barbhuiya and D. Kumala, Behaviour of a sustainable concrete in acidic environment, Sustainability, 9(2017), No. 9, art. No. 1556. doi: 10.3390/su9091556
      [48]
      K. Tsubone, Y. Yamaguchi, Y. Ogawa, and K.J. Kawai, Deterioration of concrete immersed in sulfuric acid for a long term, Key Eng. Mater., 711(2016), p. 659. doi: 10.4028/www.scientific.net/KEM.711.659
      [49]
      S. Lim and P. Mondal, Effects of incorporating nanosilica on carbonation of cement paste, J. Mater. Sci., 50(2015), No. 10, p. 3531. doi: 10.1007/s10853-015-8910-7
      [50]
      M. Rupasinghe, R. San Nicolas, P. Mendis, M. Sofi, and T. Ngo, Investigation of strength and hydration characteristics in nano-silica incorporated cement paste, Cem. Concr. Compos., 80(2017), p. 17. doi: 10.1016/j.cemconcomp.2017.02.011
      [51]
      T.F. Fu, F. Montes, P. Suraneni, J. Youngblood, and J. Weiss, The influence of cellulose nanocrystals on the hydration and flexural strength of Portland cement pastes, Polymers, 9(2017), No. 9, art. No. 424.
      [52]
      Y. Yang, T. Ji, X.J. Lin, C.Y. Chen, and Z.X. Yang, Biogenic sulfuric acid corrosion resistance of new artificial reef concrete, Constr. Build. Mater., 158(2018), p. 33. doi: 10.1016/j.conbuildmat.2017.10.007
      [53]
      J.R. Leslie and W. Cheesman, An ultrasonic method of studying deterioration and cracking in concrete structures, J. Proc., 46(1949), No. 9, p. 17.
      [54]
      D. Mazlan, M.F.M. Din, C. Tokoro, and I.S. Ibrahim, Cellulose nanocrystals addition effects on cement mortar matrix properties, Int. J. Adv. Mech. Civ. Eng, 3(2016), No. 1, p. 44.
      [55]
      H. Rahmani, A. Ramazanianpour, T. Parhizkar, and B. Hillemeier, Contradictory effects of silica fume concretes in sulfuric acid environments, [in] 3rd International Conference on Concrete & Development, Tehran, 2009, p. 761.
      [56]
      B. Huber, H. Hilbig, J.E. Drewes, and E. Müller, Evaluation of concrete corrosion after short- and long-term exposure to chemically and microbially generated sulfuric acid, Cem. Concr. Res., 94(2017), p. 36. doi: 10.1016/j.cemconres.2017.01.005
      [57]
      A.C. Bhogayata and N.K. Arora, Impact strength, permeability and chemical resistance of concrete reinforced with metalized plastic waste fibers, Constr. Build. Mater., 161(2018), p. 254. doi: 10.1016/j.conbuildmat.2017.11.135
      [58]
      H. Korucu, B. Şimşek, T. Uygunoğlu, A.B. Güvenç, and A. Yartaşı, Statistical approach to carbon based materials reinforced cementitious composites: Mechanical, thermal, electrical and sulfuric acid resistance properties, Compos. B: Eng., 171(2019), p. 347. doi: 10.1016/j.compositesb.2019.05.017
      [59]
      S. Ehrich, L. Helard, R. Letourneux, J. Willocq, and E. Bock, Biogenic and chemical sulfuric acid corrosion of mortars, J. Mater. Civ. Eng., 11(1999), No. 4, p. 340. doi: 10.1061/(ASCE)0899-1561(1999)11:4(340)
      [60]
      J. Xiao, W.J. Qu, W.G. Li, and P. Zhu, Investigation on effect of aggregate on three non-destructive testing properties of concrete subjected to sulfuric acid attack, Constr. Build. Mater., 115(2016), p. 486. doi: 10.1016/j.conbuildmat.2016.04.017

    Catalog


    • /

      返回文章
      返回