留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 1
Jan.  2021

图(4)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  3311
  • HTML全文浏览量:  708
  • PDF下载量:  45
  • 被引次数: 0
Yue-quan Su, Xin-yue Zhang, Li-meng Liu, Yi-ting Zhao, Fang Liu, and Qing-song Huang, Optimization of battery life and capacity by setting dense mesopores on the surface of nanosheets used as electrode, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 142-149. https://doi.org/10.1007/s12613-020-2088-y
Cite this article as:
Yue-quan Su, Xin-yue Zhang, Li-meng Liu, Yi-ting Zhao, Fang Liu, and Qing-song Huang, Optimization of battery life and capacity by setting dense mesopores on the surface of nanosheets used as electrode, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 142-149. https://doi.org/10.1007/s12613-020-2088-y
引用本文 PDF XML SpringerLink
研究论文

通过在用作电极的纳米片表面设置致密介孔来优化电池寿命和容量

  • Research Article

    Optimization of battery life and capacity by setting dense mesopores on the surface of nanosheets used as electrode

    + Author Affiliations
    • Nanosheets with mesopores on the surface have been prepared using molybdenum trioxide (α-MoO3). The effect of mesopores on the performance of the electrode remains elusive. The MoO3 nanosheets obtained in this study exhibited great battery performance, including good capacity, prolonged recycling life cycles, and excellent rate performance; e.g., 780 mAh/g when charged under a super high current-density of 1000 mA/g. These nanosheets demonstrated excellent stability, maintaining a capacity of 1189 mAh/g after 20 cycles, and 1075 mAh/g after 50 cycles; thus preventing the capacity to decrease to values under the scanning rate of 100 mA/g. These high-purity MoO3 nanosheets are well-ordered and have dense mesopores on the surface; these micropores contribute to the excellent electrode performance of the host electrode materials; the performance parameters include prolonged battery life and capacity. Setting mesopores or active sites on the electrode surface can be an alternative way to obtain stable electrodes in the future.

    • loading
    • [1]
      D. Larcher and J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 7(2015), No. 1, p. 19. doi: 10.1038/nchem.2085
      [2]
      B.W. Lin, X.H. Zhu, L.Z. Fang, X.Y. Liu, S. Li, T. Zhai, L. Xue, Q.B. Guo, J. Xu, and H. Xia, Birnessite nanosheet arrays with high K content as a high-capacity and ultrastable cathode for K-ion batteries, Adv. Mater., 31(2019), No. 24, art. No. 1900060.
      [3]
      S.B. Yang, X.L. Feng, S. Ivanovici, and K. Müllen, Fabrication of graphene-encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage, Angew. Chem. Int. Ed., 49(2010), No. 45, p. 8408. doi: 10.1002/anie.201003485
      [4]
      S. Han, D.Q. Wu, S. Li, F. Zhang, and X.L. Feng, Porous graphene materials for advanced electrochemical energy storage and conversion devices, Adv. Mater., 26(2014), No. 6, p. 849. doi: 10.1002/adma.201303115
      [5]
      S. Wang, Q.Y. Wang, P.P. Shao, Y.Z. Han, X. Gao, L. Ma, S. Yuan, X.J. Ma, J.W. Zhou, X. Feng, and B. Wang, Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries, J. Am. Chem. Soc., 139(2017), No. 12, p. 4258. doi: 10.1021/jacs.7b02648
      [6]
      H.J. Zhang, L.J. Gao, and Y.J. Gong, Exfoliated MoO3 nanosheets for high-capacity lithium storage, Electrochem. Commun., 52(2015), p. 67. doi: 10.1016/j.elecom.2015.01.014
      [7]
      B. Wang, X.L. Li, T.F. Qiu, B. Luo, J. Ning, J. Li, X.F. Zhang, M.H. Liang, and L.J. Zhi, High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering, Nano. Lett., 13(2013), No. 11, p. 5578. doi: 10.1021/nl403231v
      [8]
      H.N. Li, Y.M. Shi, M.H. Chiu, and L.J. Li, Emerging energy applications of two-dimensional layered transition metal dichalcogenides, Nano Energy, 18(2015), p. 293. doi: 10.1016/j.nanoen.2015.10.023
      [9]
      X.J. Cui, J.P. Xiao, Y.H. Wu, P.P. Du, R. Si, H.X. Yang, H.F. Tian, J.Q. Li, W.H. Zhang, D.H. Deng, and X.H. Bao, A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dye-sensitized solar cells, Angew. Chem. Int. Ed., 55(2016), No. 23, p. 6708. doi: 10.1002/anie.201602097
      [10]
      X.Q. Xie, T. Makaryan, M.Q. Zhao, K.L. Van Aken, Y. Gogotsi, and G.X. Wang, MoS2 nanosheets vertically aligned on carbon paper: A freestanding electrode for highly reversible sodium-ion batteries, Adv. Energy Mater., 6(2016), No. 5, art. No. 1502161. doi: 10.1002/aenm.201502161
      [11]
      L. Li, G.M. Zhou, L.C. Yin, N. Koratkar, F. Li, and H.M. Cheng, Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li–S batteries, Carbon, 108(2016), p. 120. doi: 10.1016/j.carbon.2016.07.008
      [12]
      M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5(2013), No. 4, p. 263. doi: 10.1038/nchem.1589
      [13]
      D. Sun, D.L. Ye, P. Liu, Y.G. Tang, J. Guo, L.Z. Wang, and H.Y. Wang, MoS2/graphene nanosheets from commercial bulky mos2 and graphite as anode materials for high rate sodium-ion batteries, Adv. Energy Mater., 8(2018), No. 10, art. No. 1702383. doi: 10.1002/aenm.201702383
      [14]
      D.W. Su, S.X. Dou, and G.X. Wang, Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance, Adv. Energy Mater., 5(2015), No. 6, p. 1.
      [15]
      J.K. Miao, D.P. Cai, J.H. Si, Q.T. Wang, and H.B. Zhan, Multi-component hierarchical hollow Co–Mo–O nanocages anchored on reduced graphene oxide with strong interfacial interaction for lithium-ion batteries, J. Alloys Compd., 828(2020), art. No. 154379. doi: 10.1016/j.jallcom.2020.154379
      [16]
      H. Xia, X.H. Zhu, J.Z. Liu, Q. Liu, S. Lan, Q.H. Zhang, X.Y. Liu, J.K. Seo, T.T. Chen, L. Gu, and Y.S. Meng, A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage, Nat. Commun., 9(2018), No. 1, p. 1. doi: 10.1038/s41467-017-02088-w
      [17]
      L. Xue, Q.H. Zhang, X.H. Zhu, L. Gu, J.L. Yue, Q.Y. Xia, T. Xing, T.T. Chen, Y. Yao, and H. Xia, 3D LiCoO2 nanosheets assembled nanorod arrays via confined dissolution-recrystallization for advanced aqueous lithium-ion batteries, Nano Energy, 56(2019), p. 463. doi: 10.1016/j.nanoen.2018.11.085
      [18]
      W.W. Yang, J.W. Xiao, Y. Ma, S.Q. Cui, P. Zhang, P.B. Zhai, L.J. Meng, X.G. Wang, Y. Wei, Z.G. Du, B.X. Li, Z.B. Sun, S.B. Yang, Q.F. Zhang, and Y.J. Gong, Tin intercalated ultrathin moo3 nanoribbons for advanced lithium–sulfur batteries, Adv. Energy Mater., 9(2019), No. 7, art. No. 1803137. doi: 10.1002/aenm.201803137
      [19]
      T. Tojo, H. Tawa, N. Oshida, R. Inada, and Y. Sakurai, Electrochemical characterization of a layered α-MoO3 as a new cathode material for calcium ion batteries, J. Electroanal. Chem., 825(2018), p. 51. doi: 10.1016/j.jelechem.2018.08.008
      [20]
      R.Y. Zhuang, S.S. Yao, X.Q. Shen, and T.B. Li, Hydrothermal synthesis of mesoporous MoO2 nanospheres as sulfur matrix for lithium sulfur battery, J. Electroanal. Chem., 833(2019), p. 441. doi: 10.1016/j.jelechem.2018.12.009
      [21]
      K. Wu, J. Zhan, G. Xu, C. Zhang, D.Y. Pan, and M.H. Wu, MoO3 nanosheet arrays as superior anode materials for Li- and Na-ion batteries, Nanoscale, 10(2018), No. 34, p. 16040. doi: 10.1039/C8NR03372B
      [22]
      Z. Li, J.T. Zhang, and X.W. Lou, Hollow carbon nanofibers filled with mno2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries, Angew. Chem. Int. Ed., 54(2015), No. 44, p. 12886. doi: 10.1002/anie.201506972
      [23]
      Y.F. Sun, S. Gao, F.C. Lei, and Y. Xie, Atomically-thin two-dimensional sheets for understanding active sites in catalysis, Chem. Soc. Rev., 44(2015), No. 3, p. 623. doi: 10.1039/C4CS00236A
      [24]
      L.H. Su, Y. Wang, Y.F. Sha, and M.W. Hao, Ternary active site Co3O4/NiO/MnO2 electrode with enhanced capacitive performances, J. Alloys Compd., 656(2016), p. 585. doi: 10.1016/j.jallcom.2015.10.006
      [25]
      X.F. Li, D.S. Geng, Y. Zhang, X.B. Meng, R.Y. Li, and X.L. Sun, Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries, Electrochem. Commun., 13(2011), No. 8, p. 822. doi: 10.1016/j.elecom.2011.05.012
      [26]
      X.P. Han, G.W. He, Y. He, J.F. Zhang, X.R. Zheng, L.L. Li, C. Zhong, W.B. Hu, Y.D. Deng, and T.Y. Ma, Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis, Adv. Energy Mater., 8(2018), No. 10, art. No. 1702222. doi: 10.1002/aenm.201702222
      [27]
      T. Dabrowski, A. Struck, D. Fenske, P. Maaß, and L.C. Ciacchi, Optimization of catalytically active sites positioning in porous cathodes of lithium/air batteries filled with different electrolytes, J. Electrochem. Soc., 162(2015), No. 14, p. A2796. doi: 10.1149/2.0861514jes
      [28]
      Z.Y. Wang, S. Madhavi, and X.W. Lou, Ultralong α-MoO3 nanobelts: Synthesis and effect of binder choice on their lithium storage properties, J. Phys. Chem. C, 116(2012), No. 23, p. 12508. doi: 10.1021/jp304216z
      [29]
      L.A. Riley, S.H. Lee, L. Gedvilias, and A.C. Dillon, Optimization of MoO3 nanoparticles as negative-electrode material in high-energy lithium ion batteries, J. Power Sources, 195(2010), No. 2, p. 588. doi: 10.1016/j.jpowsour.2009.08.013
      [30]
      C.V.S. Reddy, Z.R. Deng, Q.Y. Zhu, Y. Dai, J. Zhou, W. Chen, and S.I. Mho, Characterization of MoO3 nanobelt cathode for Li-battery applications, Appl. Phys. A, 89(2007), No. 4, p. 995. doi: 10.1007/s00339-007-4202-7
      [31]
      P. Meduri, E. Clark, J.H. Kim, E. Dayalan, G.U. Sumanasekera, and M.K. Sunkara, MoO3–x nanowire arrays as stable and high-capacity anodes for lithium ion batteries, Nano. Lett., 12(2012), No. 4, p. 1784. doi: 10.1021/nl203649p
      [32]
      Q. Xia, H.L, Zhao, Z.H, Du, Z.P. Zeng, C.H. Gao, Z.J. Zhang, X.F. Du, A. Kulka, and K. Świerczek, Facile synthesis of MoO3/carbon nanobelts as high-performance anode material for lithium ion batteries, Electrochim. Acta, 180(2015), p. 947. doi: 10.1016/j.electacta.2015.09.042
      [33]
      Y.J. Gong, S.B. Yang, Z. Liu, L.L. Ma, R. Vajtai, and P.M. Ajayan, Graphene-network-backboned architectures for high-performance lithium storage, Adv. Mater., 25(2013), No. 29, p. 3979. doi: 10.1002/adma.201301051
      [34]
      U.K. Sen, A. Shaligram, and S. Mitra, Intercalation anode material for lithium ion battery based on molybdenum dioxide, ACS Appl. Mater. Interfaces, 6(2014), No. 16, p. 14311. doi: 10.1021/am503605u
      [35]
      J.F. Yan, S.Y. Zhang, G. Wang, H. Wang, Z.Y. Zhang, X.F. Ruan, and H.Y. Zheng, Preparation assisted via thermal stress and electrochemical performance of graphene nano-sheets as anode materials for lithium-ion batteries, Integr. Ferroelectr., 160(2015), No. 1, p. 2.
      [36]
      D. Mariotti, H. Lindstrom, A.C. Bose, and K.K. Ostrikov, Monoclinic β-MoO3 nanosheets produced by atmospheric microplasma: application to lithium-ion batteries, Nanotechnology, 19(2008), No. 49, art. No. 495302. doi: 10.1088/0957-4484/19/49/495302
      [37]
      X.J. Zhao, W. Jia, X.Y. Wu, Y. Lv, J.S. Qiu, J.X. Guo, X.C. Wang, D.Z. Jia, J.F. Yan, and D.L. Wu, Ultrafine MoO3 anchored in coal-based carbon nanofiber as anode for advanced lithium-ion batteries, Carbon, 156(2020), p. 445. doi: 10.1016/j.carbon.2019.09.065
      [38]
      L.Q. Mai, B. Hu, W. Chen, Y.Y. Qi, C.S. Lao, R.S. Yang, Y. Dai, and Z.L. Wang, Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries, Adv. Mater., 19(2007), No. 21, p. 3712. doi: 10.1002/adma.200700883
      [39]
      B. Ahmed, M. Shahid, D.H. Nagaraju, D.H. Anjum, M.N. Hedhili, and H.N. Alshareef, Surface passivation of moo3 nanorods by atomic layer deposition toward high rate durable li ion battery anodes, ACS Appl. Mater. Interfaces, 7(2015), No. 24, p. 13154. doi: 10.1021/acsami.5b03395
      [40]
      J.F. Ni, G.B. Wang, J. Yang, D.L. Gao, J.T. Chen, L.J. Gao, and Y. Li, Carbon nanotube-wired and oxygen-deficient MoO3 nanobelts with enhanced lithium-storage capability, J. Power Sources, 247(2014), p. 90. doi: 10.1016/j.jpowsour.2013.08.068
      [41]
      H.J. Peng, J.Q. Huang, M.Q. Zhao, Q. Zhang, X.B. Cheng, X.Y. Liu, W.Z. Qian, and F. Wei, Nanoarchitectured graphene/CNT@ porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium–sulfur batteries, Adv. Funct. Mater., 24(2014), No. 19, p. 2772. doi: 10.1002/adfm.201303296
      [42]
      W. Zhuang, L. Li, J.H. Zhu, R. An, L.H. Lu, X. Lu, X.B. Wu, and H.J. Ying, Facile synthesis of mesoporous MoS2–TiO2 nanofibers for ultrastable lithium ion battery anodes, ChemElectroChem, 2(2015), No. 3, p. 374. doi: 10.1002/celc.201402358
      [43]
      H. Liu, D.W. Su, R.F. Zhou, B. Sun, G.X. Wang, and S.Z. Qiao, Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage, Adv. Energy Mater., 2(2012), No. 8, p. 970. doi: 10.1002/aenm.201200087
      [44]
      Y.F. Shi, Y. Wan, R.L. Liu, B. Tu, and D.Y. Zhao, Synthesis of highly ordered mesoporous crystalline WS2 and MoS2 via a high-temperature reductive sulfuration route, J. Am. Chem. Soc., 129(2007), No. 30, p. 9522. doi: 10.1021/ja072910n
      [45]
      R. Nadimicherla, R.H. Zha, L. Wei, and X. Guo, Single crystalline flowerlike α-MoO3 nanorods and their application as anode material for lithium-ion batteries, J. Alloys Compd., 687(2016), p. 79. doi: 10.1016/j.jallcom.2016.06.099
      [46]
      M.B. Sreedhara, A.L. Santhosha, A.J. Bhattacharyya, and C.N.R. Rao, Composite of few-layer MoO3 nanosheets with graphene as a high performance anode for sodium-ion batteries, J. Mater. Chem. A, 4(2016), No. 24, p. 9466. doi: 10.1039/C6TA02561G
      [47]
      W.Q. Yao, S.B. Wu, L. Zhan, and Y.L. Wang, Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries, Chem. Eng. J., 361(2019), p. 329. doi: 10.1016/j.cej.2018.08.217
      [48]
      M.Y. Wang, Y. Huang, Y.D. Zhu, N. Zhang, J.X. Zhang, X.L. Qin, and H.M. Zhang, Synthesis of porous ZnxCo3–xO4 hollow nanoboxes derived from metal-organic frameworks for lithium and sodium storage, Electrochim. Acta, 335(2020), art. No. 135694. doi: 10.1016/j.electacta.2020.135694
      [49]
      M.Y. Wang, Y. Huang, N. Zhang, Y.D. Zhu, H.M. Zhang, and J.K. Kim, Fabrication of Ti3+ doped TiO2 coated Mn3O4 nanorods with voids and channels for lithium storage, Chem. Eng. J., 370(2019), p. 1425. doi: 10.1016/j.cej.2019.04.023
      [50]
      K. Moyer, R. Carter, T. Hanken, A. Douglas, L. Oakes, and C.L. Pint, Electrophoretic deposition of LiFePO4 onto 3-D current collectors for high areal loading battery cathodes, Mater. Sci. Eng. B, 241(2019), p. 42. doi: 10.1016/j.mseb.2019.02.003
      [51]
      H. Tang, J. Zhang, Y.J. Zhang, Q.Q. Xiong, Y.Y. Tong, Y. Li, X.L. Wang, C.D. Gu, and J.P. Tu, Porous reduced graphene oxide sheet wrapped silicon composite fabricated by steam etching for lithium-ion battery application, J. Power Sources, 286(2015), p. 431. doi: 10.1016/j.jpowsour.2015.03.185
      [52]
      Y.X. Sun, J. Wang, B.T. Zhao, R. Cai, R. Ran, and Z.P. Shao, Binder-free α-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector, J. Mater. Chem. A, 1(2013), No. 15, p. 4736. doi: 10.1039/c3ta01285a
      [53]
      Z.Q. Yuan, L.L. Si, D.H. Wei, L. Hu, Y.C. Zhu, X.N. Li, and Y.T. Qian, Vacuum topotactic conversion route to mesoporous orthorhombic moo3 nanowire bundles with enhanced electrochemical performance, J. Phys. Chem. C, 118(2014), No. 10, p. 5091. doi: 10.1021/jp410550v
      [54]
      K. Dewangan, N.N. Sinha, P.K. Sharma, A.C. Pandey, N. Munichandraiah, and N.S. Gajbhiye, Synthesis and characterization of single-crystalline α-MoO3 nanofibers for enhanced Li-ion intercalation applications, CrystEngComm, 13(2011), No. 3, p. 927. doi: 10.1039/C0CE00271B
      [55]
      S.H. Lee, Y.H. Kim, R. Deshpande, P.A. Parilla, E. Whitney, D.T. Gillaspie, K.M. Jones, A.H. Mahan, S.B. Zhang, and A.C. Dillon, Reversible lithium-ion insertion in molybdenum oxide nanoparticles, Adv. Mater., 20(2008), No. 19, p. 3627. doi: 10.1002/adma.200800999
      [56]
      C.L. Liu, Y. Wang, C. Zhang, X.S. Li, and W.S. Dong, In situ synthesis of α-MoO3/graphene composites as anode materials for lithium ion battery, Mater. Chem. Phys., 143(2014), No. 3, p. 1111. doi: 10.1016/j.matchemphys.2013.11.011

    Catalog


    • /

      返回文章
      返回