Cite this article as: |
Yang Liu, Yan-hui Sun, and Hao-tian Wu, Effects of chromium on the microstructure and hot ductility of Nb-microalloyed steel, Int. J. Miner. Metall. Mater., 28(2021), No. 6, pp. 1011-1021. https://doi.org/10.1007/s12613-020-2092-2 |
It is well-known that the surface quality of the niobium microalloy profiled billet directly affects the comprehensive mechanical properties of the H-beam. The effects of chromium on the γ/α phase transformation and high-temperature mechanical properties of Nb-microalloyed steel were studied by Gleeble tensile and high-temperature in-situ observation experiments. Results indicated that the starting temperature of the γ→α phase transformation decreases with increasing Cr content. The hot ductility of Nb-microalloyed steel is improved by adding 0.12wt% Cr. Chromium atoms inhibit the diffusion of carbon atoms, which reduces the thickness of grain boundary ferrite. The number fractions of high-angle grain boundaries increase with increasing chromium content. In particular, the proportion is up to 48.7% when the Cr content is 0.12wt%. The high-angle grain boundaries hinder the crack propagation and improve the ductility of Nb-microalloyed steel.
[1] |
T. Siwecki, J. Eliasson, R. Lagneborg, and B. Hutchinson, Vanadium microalloyed bainitic hot strip steels, ISIJ Int., 50(2010), No. 5, p. 760. doi: 10.2355/isijinternational.50.760
|
[2] |
I. Mejia, G. Altamirano, A. Bedolla-Jacuinde, and J.M. Cabrera, Effect of boron on the hot ductility behavior of a low carbon advanced ultra-high strength steel (A-UHSS), Metall. Mater. Trans. A, 44(2013), No. 11, p. 5165. doi: 10.1007/s11661-013-1870-0
|
[3] |
D. Wu, F.M. Wang, J. Cheng, and C.R. Li, Effect of Nb and V on the continuous cooling transformation of undercooled austenite in Cr–Mo–V steel for brake discs, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 892. doi: 10.1007/s12613-018-1638-z
|
[4] |
L. Lin, B.S. Li, G.M. Zhu, Y.L. Kang, and R.D. Liu, Effects of Nb on the microstructure and mechanical properties of 38MnB5 steel, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1181. doi: 10.1007/s12613-018-1670-z
|
[5] |
K. Chen, S.Y. Rui, F. Wang, J.X. Dong, and Z.H. Yao, Microstructure and homogenization process of as-cast GH4169D alloy for novel turbine disk, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 889. doi: 10.1007/s12613-019-1802-0
|
[6] |
E. Hurtado-Delgado and R.D. Morales, Hot ductility and fracture mechanisms of a C–Mn–Nb–Al steel, Metall. Mater. Trans. B, 32(2001), No. 5, p. 919. doi: 10.1007/s11663-001-0078-7
|
[7] |
Y. Maehara and Y. Ohmori, The precipitation of A1N and NbC and the hot ductility of low carbon steels, Mater. Sci. Eng., 62(1984), No. 1, p. 109. doi: 10.1016/0025-5416(84)90272-6
|
[8] |
H. Nakata and H.Yasunaka, Influence of carbo-nitride and proeutectoid ferrite on hot ductility of Nb, V containing steel, Tetsu-to-Hagane., 74(1988), No. 7, p. 1290. doi: 10.2355/tetsutohagane1955.74.7_1290
|
[9] |
K.I. Suzuki, S. Miyagawa, Y. Saito, and K. Shiotani, Effect of microalloyed nitride forming elements on precipitation of carbonitride and high temperature ductility of continuously cast low carbon Nb containing steel slab, ISIJ Int., 35(1995), No. 1, p. 34. doi: 10.2355/isijinternational.35.34
|
[10] |
O. Comineli, R. Abushosha, and B. Mintz, Influence of titanium and nitrogen on hot ductility of C–Mn–Nb–Al steels, Mater. Sci. Technol., 15(1999), No. 9, p. 1058. doi: 10.1179/026708399101506788
|
[11] |
S.K. Kim, N.J. Kim, and J.S. Kim, Effect of boron on the hot ductility of Nb-containing steel, Metall. Mater. Trans. A, 33(2002), No. 3, art. No. 701. doi: 10.1007/s11661-002-0133-2
|
[12] |
E. López-Chipres, I. Mejía, C. Maldonado, A. Bedolla-Jacuinde, and J.M. Cabrera, Hot ductility behavior of boron microalloyed steels, Mater. Sci. Eng. A, 460-461(2007), p. 464. doi: 10.1016/j.msea.2007.01.098
|
[13] |
F. Zarandi and S. Yue, The effect of boron on hot ductility of Nb-microalloyed steels, ISIJ Int., 46(2006), No. 4, p. 591. doi: 10.2355/isijinternational.46.591
|
[14] |
N.E. Hannerz, Critical hot plasticity and transverse cracking in continuous slab casting with particular reference to composition, Trans. Iron Steel Inst. Jpn., 25(1985), No. 2, p. 149. doi: 10.2355/isijinternational1966.25.149
|
[15] |
B. Mintz, S. Yue, and J.J. Jonas, Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting, Int. Mater. Rev., 36(1991), No. 1, p. 187. doi: 10.1179/imr.1991.36.1.187
|
[16] |
L.H. Chown and L.A. Cornish, Investigation of hot ductility in Al-killed boron steels, Mater. Sci. Eng. A, 494(2008), No. 1-2, p. 263. doi: 10.1016/j.msea.2008.04.026
|
[17] |
B.W. Luo, J. Zhou, P.P. Bai, S.Q. Zheng, T. An, and X.L. Wen, Comparative study on the corrosion behavior of X52, 3Cr, and 13Cr steel in an O2–H2O–CO2 system: Products, reaction kinetics, and pitting sensitivity, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 646. doi: 10.1007/s12613-017-1447-9
|
[18] |
Y. Li, M.D. Chen, J.K. Li, L.F. Song, X. Zhang, and Z.Y. Liu, Flow-accelerated corrosion behavior of 13Cr stainless steel in a wet gas environment containing CO2, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 779. doi: 10.1007/s12613-018-1626-3
|
[19] |
L.N. Zhang, X.L. Xiong, Y. Yan, K.W. Gao, L.J. Qiao, and Y.J. Su, Atomic modeling for the initial stage of chromium passivation, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 732. doi: 10.1007/s12613-019-1803-z
|
[20] |
S.C. Chen, H.X. Ye, and X.Q. Lin, Effect of rare earth and alloying elements on the thermal conductivity of austenitic medium manganese steel, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 670. doi: 10.1007/s12613-017-1449-7
|
[21] |
T.K. Hirsch, A. Da Silva Rocha, and R.M. Nunes, Characterization of local residual stress inhomogeneities in combined wire drawing processes of AISI 1045 steel bars, Int. J. Adv. Manuf. Technol., 70(2014), p. 661. doi: 10.1007/s00170-013-5314-1
|
[22] |
H.R. Song, E.G. Kang, and W.J. Nam, Effect of alloying elements on work hardening behavior in cold drawn hyper-eutectoid steel wires, Mater. Sci. Eng. A, 449-451(2007), p. 1147. doi: 10.1016/j.msea.2006.02.292
|
[23] |
S.J. Kim, C.G. Lee, T.H. Lee, and C.S.Oh, Effect of Cu, Cr and Ni on mechanical properties of 0.15wt% C TRIP-aided cold rolled steels, Scripta Mater., 48(2003), No. 5, p. 539. doi: 10.1016/S1359-6462(02)00477-3
|
[24] |
R. Hossain, F. Pahlevani, and V. Sahajwalla, Effect of small addition of Cr on stability of retained austenite in high carbon steel, Mater. Charact., 125(2017), p. 114. doi: 10.1016/j.matchar.2017.02.001
|
[25] |
D.S. Leem, Y.D. Lee, J.H. Jun, and C.S. Choi, Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe–13%Cr–7%Ni–3%Si martensitic stainless steel, Scripta Mater., 45(2001), No. 7, p. 767. doi: 10.1016/S1359-6462(01)01093-4
|
[26] |
P.D. Bilmes, M. Solari, and C.L. Llorente, Characteristics and effects of austenite resulting from tempering of 13Cr–NiMo martensitic steel weld metals, Mater. Charact., 46(2001), No. 4, p. 285. doi: 10.1016/S1044-5803(00)00099-1
|
[27] |
M. Ai Dawood, I.S Ei Mahallawi, M.E. Abd Ei Azim, and M.R. Ei Koussy, Thermal aging of 16Cr–5Ni–1Mo stainless steel Part 1—Microstructural analysis, Mater. Sci. Technol., 20(2004), No. 3, p. 363. doi: 10.1179/026708304225011135
|
[28] |
Y.Y. Song, D.H. Ping, F.X. Yin, X.Y. Li, and Y.Y. Li, Microstructural evolution and low temperature impact toughness of a Fe–13%Cr–4%Ni–Mo martensitic stainless steel, Mater. Sci. Eng. A, 527(2010), No. 3, p. 614. doi: 10.1016/j.msea.2009.08.022
|
[29] |
P.J. Jacques, Q. Furnémont, A. Mertens, and F. Delannay, On the sources of work hardening in multiphase steels assisted by transformation-induced plasticity, Philos. Mag. A, 81(2001), No. 7, p. 1789. doi: 10.1080/01418610108216637
|
[30] |
H. Yin, T. Emi, and H. Shibata, Morphological instability of δ-ferrite/γ-austenite interphase boundary in low carbon steels, Acta Mater., 47(1999), No. 5, p. 1523. doi: 10.1016/S1359-6454(99)00022-1
|
[31] |
Z.Z. Liu, Y. Kobayashi, J. Yang, K. Nagai, and M. Kuwabara, “In-situ” observation of the δ/γ phase transformation on the surface of low carbon steel containing phosphorus at various cooling rates, ISIJ Int., 46(2006), No. 6, p. 847. doi: 10.2355/isijinternational.46.847
|
[32] |
R.J. Dippenaar and D.J. Phelan, Delta-ferrite recovery structures in low-carbon steels, Metall. Mater. Trans. B, 34(2003), No. 5, p. 495. doi: 10.1007/s11663-003-0016-y
|
[33] |
H. Hasegawa, K. Nakajima, and S. Mizoguchi, “In-situ” observation of phase transformation and MnS precipitation in Fe–Si alloys, Tetsu- to- Hagane., 87(2001), No. 6, p. 433. doi: 10.2355/tetsutohagane1955.87.6_433
|
[34] |
H. Chen, E. Gamsjäger, S Schider, H. Khanbareh, and S. Van Der Zwaag, In situ observation of austenite–ferrite interface migration in a lean Mn steel during cyclic partial phase transformations, Acta Mater., 61(2013), No. 7, p. 2414. doi: 10.1016/j.actamat.2013.01.013
|
[35] |
Y. Liu and Y.H. Sun, In-situ observation of interaction between precipitates and austenite during δ→γ phase transformations, Mater. Sci. Technol., 35(2019), No. 5, p. 536. doi: 10.1080/02670836.2019.1572299
|
[36] |
Y.H. Sun, Y.N. Zeng, and K.K. Cai, Hot ductility of Ti–V bearing microalloyed steel in continuous casting, J. Iron. Steel Res. Int., 21(2014), No. 4, p. 451. doi: 10.1016/S1006-706X(14)60070-4
|
[37] |
D. Phelan and R. Dippenaar, Widmanstätten ferrite plate formation in low-carbon steels, Metall. Mater. Trans. A, 35(2004), No. 12, p. 3701. doi: 10.1007/s11661-004-0276-4
|
[38] |
D. Phelan, N. Stanford, and R. Dippenaar, In situ observations of Widmanstten ferrite formation in a low-carbon steel, Mater. Sci. Eng. A, 407(2005), No. 1-2, p. 127. doi: 10.1016/j.msea.2005.07.015
|
[39] |
G.C. Jin, S.Y. Chen, Q.C. Li, G.W. Chang, and X.D. Yue, In-situ observation of proeutectoid ferrite growth process in carbon steel under continuous cooling conditions, J. Iron Steel Res. Int., 20(2013), No. 10, p. 94. doi: 10.1016/S1006-706X(13)60183-1
|
[40] |
H.I. Aaronson and C. Wells, Sympathetic nucleation of ferrite, JOM, 8(1956), No. 10, p. 1216. doi: 10.1007/BF03377853
|
[41] |
G. Spanos and M.G. Hall, The formation mechanism(s), morphology, and crystallography of ferrite sideplates, Metall. Mater. Trans. A, 27(1996), No. 6, p. 1519. doi: 10.1007/BF02649812
|
[42] |
G. Spanos, A.W. Wilson, and M.V. Kral, New insights into the widmanstätten proeutectoid ferrite transformation: Integration of crystallographic and three-dimensional morphological observations, Metall. Mater. Trans. A, 36(2005), No. 5, p. 1209. doi: 10.1007/s11661-005-0213-1
|
[43] |
K.M. Banks, A. Tuling, and B. Mintz, Influence of V and Ti on hot ductility of Nb containing steels of peritectic C contents, Mater. Sci. Technol., 27(2011), No. 8, p. 1309. doi: 10.1179/026708309X12584564052139
|
[44] |
B.H. Chen and H. Yu, Hot ductility behavior of V–N and V–Nb microalloyed steels, Int. J. Miner. Metall. Mater., 19(2012), No. 6, p. 525. doi: 10.1007/s12613-012-0590-6
|
[45] |
H.R. Ezatpour, M. Torabi-Parizi, G.R. Ebrahimi, and A Momeni, Effect of micro-alloy elements on dynamic recrystallization behavior of a high-manganese steel, Steel Res. Int., 89(2018), No. 7, art. No. 1700559. doi: 10.1002/srin.201700559
|
[46] |
S.J. Lee and Y.K. Lee, Prediction of austenite grain growth during austenitization of low alloy steels, Mater. Des., 29(2008), No. 9, p. 1840. doi: 10.1016/j.matdes.2008.03.009
|
[47] |
L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du, Analysis of microstructural variation and mechanical behaviors in submerged arc welded joint of high strength low carbon bainitic steel, Mater. Sci. Eng. A, 558(2012), p. 592. doi: 10.1016/j.msea.2012.08.057
|
[48] |
M. Diaz-Fuentes, A. Iza-Mendia, and I. Gutierrez, Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior, Metall. Mater. Trans. A, 34(2003), No. 11, p. 2505. doi: 10.1007/s11661-003-0010-7
|
[49] |
J.M. Rodriguez-Ibabe, The role of microstrucure in toughness behaviour of microalloyed steels, Mater. Sci. Forum., 284-286(1998), p. 51. doi: 10.4028/www.scientific.net/MSF.284-286.51
|
[50] |
J. Zhang, F.M. Wang, Z.B. Yang, and C.R. Li, Microstructure, precipitation, and mechanical properties of V–N-alloyed steel after different cooling processes, Metall. Mater. Trans. A, 47(2016), No. 12, p. 6621. doi: 10.1007/s11661-016-3763-5
|
[51] |
I. Mejía, A.E. Salas-Reyes, A. Bedolla-Jacuinde, J. Calvo, and J.M. Cabrera, Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe–21Mn–1.3Al–1.5Si–0.5C TWIP steel, Mater. Sci. Eng. A, 616(2014), p. 229. doi: 10.1016/j.msea.2014.08.030
|
[52] |
I. Mejía, A.E. Salas-Reyes, J. Calvo, and J. M. Cabrera, Effect of Ti and B microadditions on the hot ductility behavior of a High-Mn austenitic Fe–23Mn–1.5Al–1.3Si–0.5C TWIP steel, Mater. Sci. Eng. A, 648(2015), p. 311. doi: 10.1016/j.msea.2015.09.079
|
[53] |
K. Banks, A. Koursaris, F. Verdoorn, and A. Tuling, Precipitation and hot ductility of low C–V and low C–V–Nb microalloyed steels during thin slab casting, Mater. Sci. Technol., 17(2001), No. 12, p. 1596. doi: 10.1179/026708301101509665
|
[54] |
S.C. Moon and R. Dippenaar, The effect of austenite grain size on hot ductility of steels, [in] MS&T 2004 Conference Proceedings, New Orleans, 2004, p. 675.
|
[55] |
B. Mintz, J. Lewis, and J.J. Jonas, Importance of deformation induced ferrite and factors which control its formation, Mater. Sci. Technol., 13(1997), No. 5, p. 379. doi: 10.1179/mst.1997.13.5.379
|
[56] |
T. Maki, T. Nagamichi, N. Abe, and I. Tamura, Formation behavior of proeutectoid ferrite and hot ductility in (α+γ) two phase region in low carbon steels, Tetsu-to-Hagane, 71(1985), No. 10, p. 1367. doi: 10.2355/tetsutohagane1955.71.10_1367
|
[57] |
K. Furumai, X. Wang, H. Zurob, and A. Phillion, Evaluating the effect of the competition between NbC precipitation and grain size evolution on the hot ductility of Nb containing steels, ISIJ Int., 59(2019), No. 6, p. 1064. doi: 10.2355/isijinternational.ISIJINT-2018-716
|
[58] |
Z.H. Wang, S.H. Sun, B. Wang, Z.P. Shi, and W.T. Fu, Importance and role of grain size in free surface cracking prediction of heavy forgings, Mater. Sci. Eng. A, 625(2015), p. 321. doi: 10.1016/j.msea.2014.12.022
|