留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 10
Oct.  2020

图(9)

数据统计

分享

计量
  • 文章访问数:  2576
  • HTML全文浏览量:  459
  • PDF下载量:  74
  • 被引次数: 0
Zhi-sheng Nong, Hao-yu Wang,  and Jing-chuan Zhu, First-principles calculations of structural, elastic and electronic properties of (TaNb)0.67(HfZrTi)0.33 high-entropy alloy under high pressure, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1405-1414. https://doi.org/10.1007/s12613-020-2095-z
Cite this article as:
Zhi-sheng Nong, Hao-yu Wang,  and Jing-chuan Zhu, First-principles calculations of structural, elastic and electronic properties of (TaNb)0.67(HfZrTi)0.33 high-entropy alloy under high pressure, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1405-1414. https://doi.org/10.1007/s12613-020-2095-z
引用本文 PDF XML SpringerLink
研究论文

高压下(TaNb)0.67(HfZrTi)0.33高熵合金结构、弹性和电子性质的第一性原理计算

  • Research Article

    First-principles calculations of structural, elastic and electronic properties of (TaNb)0.67(HfZrTi)0.33 high-entropy alloy under high pressure

    + Author Affiliations
    • To clarify the effect of pressure on a (TaNb)0.67(HfZrTi)0.33 alloy composed of a solid solution with a single body-centered-cubic crystal structure, we used first-principles calculations to theoretically investigate the structural, elastic, and electronic properties of this alloy at different pressures. The results show that the calculated equilibrium lattice parameters are consistent with the experimental results, and that the normalized structural parameters of lattice constants and volume decrease whereas the total enthalpy difference ΔE and elastic constants increase with increasing pressure. The (TaNb)0.67(HfZrTi)0.33 alloy exhibits mechanical stability at high pressures lower than 400 GPa. At high pressure, the bulk modulus B shows larger values than the shear modulus G, and the alloy exhibits an obvious anisotropic feature at pressures ranging from 30 to 70 GPa. Our analysis of the electronic structures reveals that the atomic orbitals are occupied by the electrons change due to the compression of the crystal lattices under the effect of high pressure, which results in a decrease in the total density of states and a wider electron energy level. This factor is favorable for zero resistance.

    • loading
    • [1]
      J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), p. 299. doi: 10.1002/adem.200300567
      [2]
      B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377(2004), p. 213. doi: 10.1016/j.msea.2003.10.257
      [3]
      M. Vaidya, K. Guruvidyathri, and B.S. Murty, Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys, J. Alloys Compd., 774(2019), p. 856. doi: 10.1016/j.jallcom.2018.09.342
      [4]
      D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448. doi: 10.1016/j.actamat.2016.08.081
      [5]
      Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61(2014), p. 1. doi: 10.1016/j.pmatsci.2013.10.001
      [6]
      K.A. Christofidou, E.J. Pickering, P. Orsatti, P.M. Mignanelli, T.J.A. Slater, H.J. Stone, and N.G. Jones, On the influence of Mn on the phase stability of the CrMnxFeCoNi high entropy alloys, Intermetallics, 92(2018), p. 84. doi: 10.1016/j.intermet.2017.09.011
      [7]
      N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Doherty, and K.C. Cho, High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy, Mater. Des., 86(2015), p. 598. doi: 10.1016/j.matdes.2015.07.161
      [8]
      S.G. Ma and Y. Zhang, Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy, Mater. Sci. Eng. A, 532(2012), p. 480. doi: 10.1016/j.msea.2011.10.110
      [9]
      O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd., 509(2011), No. 20, p. 6043. doi: 10.1016/j.jallcom.2011.02.171
      [10]
      C.M. Liu, H.M. Wang, S.Q. Zhang, H.B. Tang, and A.L. Zhang, Microstructure and oxidation behavior of new refractory high entropy alloys, J. Alloys Compd., 583(2014), p. 162. doi: 10.1016/j.jallcom.2013.08.102
      [11]
      Y. Zou, S. Maiti, W. Steurer, and R. Spolenak, Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy, Acta Mater., 65(2014), p. 85. doi: 10.1016/j.actamat.2013.11.049
      [12]
      H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, and M.C. Gao, Mechanical properties of refractory high-entropy alloys: Experiments and modeling, J. Alloys Compd., 696(2017), p. 1139. doi: 10.1016/j.jallcom.2016.11.188
      [13]
      A. Poulia, E. Georgatis, A. Lekatou, and A.E. Karantzalis, Microstructure and wear behavior of a refractory high entropy alloy, Int. J. Refract Met. Hard Mater., 57(2016), p. 50. doi: 10.1016/j.ijrmhm.2016.02.006
      [14]
      O.N. Senkov, S.V. Senkova, and C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta Mater., 68(2014), p. 214. doi: 10.1016/j.actamat.2014.01.029
      [15]
      J. Guo, H.H. Wang, F.Von Rohr, Z. Wang, S. Cai, Y.Z. Zhou, K. Yang, A.G. Li, S. Jiang, Q. Wu, R.J.Cava, and L.L. Sun, Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa, Proc. Nat. Acad. Sci. U.S.A., 114(2017), No. 50, p. 13144. doi: 10.1073/pnas.1716981114
      [16]
      B.L. Yin and W.A. Curtin, First-principles-based prediction of yield strength in the RhIrPdPtNiCu high-entropy alloy, npj Comput. Mater., 5(2019), art. No. 14. doi: 10.1038/s41524-019-0151-x
      [17]
      D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigen value formalism, Phys. Rev. B, 41(1990), No. 11, p. 7892. doi: 10.1103/PhysRevB.41.7892
      [18]
      M. Marlo and V. Milman, Density-functional study of bulk and surface propertiesof titanium nitride using different exchange-correlation functionals, Phys. Rev. B, 62(2000), p. 2899. doi: 10.1103/PhysRevB.62.2899
      [19]
      J.A. White and D.M. Bird, Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations, Phys. Rev. B, 50(1994), No. 7, p. 4954. doi: 10.1103/PhysRevB.50.4954
      [20]
      J.D. Pack and H.J. Monkhorst, Special points for Brillouin-zone integrations-areply, Phys. Rev. B, 16(1977), No. 4, p. 1748. doi: 10.1103/PhysRevB.16.1748
      [21]
      H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188. doi: 10.1103/PhysRevB.13.5188
      [22]
      E. Delczeg-Czirjak, E. Nurmi, K. Kokko, and L. Vitos, Effect of long-range order on elastic properties of Pd0.5Ag0.5 alloy from first principles, Phys. Rev. B, 84(2011), No. 9, art. No. 094205. doi: 10.1103/PhysRevB.84.094205
      [23]
      Z.S. Nong, J.C. Zhu, and R.D. Zhao, Prediction of structure and elastic properties of AlCrFeNiTi system high entropy alloys, Intermetallics, 86(2017), p. 134. doi: 10.1016/j.intermet.2017.03.014
      [24]
      H.Z. Yao, L.Z. Ouyang, and W.Y. Ching, Ab initio calculation of elastic constants of ceramic crystals, J. Am. Ceram. Soc., 90(2007), No. 10, p. 3194. doi: 10.1111/j.1551-2916.2007.01931.x
      [25]
      L.S. Ma, Y.H. Duan, and R.Y. Li, Structural, elastic and electronic properties of C14-type Al2M (M = Mg, Ca, Sr and Ba) Laves phases, Physica B, 507(2017), p. 147. doi: 10.1016/j.physb.2016.12.004
      [26]
      J.F. Nye, Physical Properties of Crystals, Oxford University Press, Oxford, 1985.
      [27]
      C.G. Broyden, J.E. Dennis, and J.J. Moré, On the local and superlinear convergence of Quasi-Newton methods, JMA Appl. Math., 12(1973), No. 3, p. 223.
      [28]
      F. von Rohr, M.J. Winiarski, J. Tao, T. Klimczuk, and R.J. Cava, Effect of electron count and chemical complexity in the Ta–Nb–Hf–Zr–Ti high-entropy alloy superconductor, Proc. Nat. Acad. Sci. U.S.A., 113(2016), No. 46, p. 7144. doi: 10.1073/pnas.1615926113
      [29]
      M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford, 1954.
      [30]
      I.R. Shein and A.L. Ivanovskii, Elastic properties of mono-and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations, J. Phys.:Condens. Mater., 20(2008), No. 41, art. No. 415218. doi: 10.1088/0953-8984/20/41/415218
      [31]
      S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London Edinburgh Dublin Philos. Mag. J. Sci., 45(1954), No. 367, p. 823. doi: 10.1080/14786440808520496
      [32]
      P. Li, L.S. Ma, M.J. Peng, B.P. Shu, and Y.H. Duan, Elastic anisotropies and thermal conductivities of WB2 diborides in different crystal structures: A first-principles calculation, J. Alloys Compd, 747(2018), p. 905. doi: 10.1016/j.jallcom.2018.03.109
      [33]
      H.S. Li, Y. Cao, S.G. Zhou, P.X. Zhu, and J.C. Zhu, Site preferences and effects of X (X = Mn, Fe, Co, Cu) on the properties of NiAl: A first-principles study, Mod. Phys. Lett. B, 30(2016), No. 9, art. No. 1650133. doi: 10.1142/S0217984916501335
      [34]
      J. Bardeen, L.N. Cooper and J.R. Schrieffer, Theory of superconductivity, Phys. Rev., 108(1957), No. 5, p. 1175. doi: 10.1103/PhysRev.108.1175
      [35]
      K. Jasiewicz, B. Wiendlocha, K. Górnicka, K. Gofryk, M. Gazda, T. Klimczuk, and J. Tobola, Pressure effects on the electronic structure and superconductivity of (TaNb)0.67(HfZrTi)0.33 high entropy alloy, Phys. Rev. B, 100(2019), No. 18, art. No. 184503. doi: 10.1103/PhysRevB.100.184503

    Catalog


    • /

      返回文章
      返回