留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 6
Jun.  2021

图(10)

数据统计

分享

计量
  • 文章访问数:  4508
  • HTML全文浏览量:  1189
  • PDF下载量:  191
  • 被引次数: 0
Muntadher I. Rahmah, Raad S. Sabry,  and Wisam J. Aziz, Preparation and photocatalytic property of Fe2O3/ZnO composites with superhydrophobicity, Int. J. Miner. Metall. Mater., 28(2021), No. 6, pp. 1072-1079. https://doi.org/10.1007/s12613-020-2096-y
Cite this article as:
Muntadher I. Rahmah, Raad S. Sabry,  and Wisam J. Aziz, Preparation and photocatalytic property of Fe2O3/ZnO composites with superhydrophobicity, Int. J. Miner. Metall. Mater., 28(2021), No. 6, pp. 1072-1079. https://doi.org/10.1007/s12613-020-2096-y
引用本文 PDF XML SpringerLink
研究论文

氧化铁/氧化锌超疏水复合材料的制备及其光催化性能

  • Research Article

    Preparation and photocatalytic property of Fe2O3/ZnO composites with superhydrophobicity

    + Author Affiliations
    • A facile approach was developed to construct Fe2O3-modified ZnO micro/nanostructures with excellent superhydrophobicity and photocatalytic activities. The effects of stearic acid (SA) and Fe2O3 on the morphological characteristics, water contact angle (WCA), and photocatalytic degradation were investigated. Superhydrophobicity results showed that WCA increased from 144° ± 2° to 154° ± 2° when the weight of SA increased from 5 to 20 mg because of the formation of a hierarchical or rough structure. Furthermore, Fe2O3-modified ZnO micro/nanostructure surfaces before and after SA treatment (20 mg) were chosen to evaluate the photodegradation of methylene blue (MB) dye under the support of visible light. MB degraded after 80 min of irradiation, and its photodegradation efficiencies were 91.5% at the superhydrophobic state and 92% at the hydrophilic state. This improvement in photocatalytic activity at both states might be attributed to an increase in surface area and improvement in charge carrier separation.

    • loading
    • [1]
      K.M. Wisdom, J.A. Watson, X. Qu, F. Liu, G.S. Watson, and C.H. Chen, Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate, Proc. Natl. Acad. Sci. U.S.A., 110(2013), No. 20, p. 7992. doi: 10.1073/pnas.1210770110
      [2]
      F. Geyer, M. D’Acunzi, A. Sharifi-Aghili, A. Saal, N. Gao, A. Kaltbeitzel, T.F. Sloot, R. Berger, H.J. Butt, and D. Vollmer, When and how self-cleaning of superhydrophobic surfaces works, Sci. Adv., 6(2020), No. 3, art. No. eaaw9727. doi: 10.1126/sciadv.aaw9727
      [3]
      Z.G. Le, C.B. Xiong, J.Y. Gong, X. Wu, T. Pan, Z.S. Chen, and Z.B. Xie, Self-cleaning isotype g-C3N4 heterojunction for efficient photocatalytic reduction of hexavalent uranium under visible light, Environ. Pollut., 260(2020), art. No. 114070. doi: 10.1016/j.envpol.2020.114070
      [4]
      Z.F. Dong and Y. Wu, Magnetically separable photocatalyst of direct Z-scheme g-C3N4 nanosheets/natural hematite ore hybrids, J. Photochem. Photobiol. A, 336(2017), p. 156. doi: 10.1016/j.jphotochem.2016.12.022
      [5]
      A.K. Behera, R.N. Viswanath, C. Lakshmanan, T. Mathews, and M. Kamruddin, Synthesis of silicon nanowalls exhibiting excellent antireflectivity and near super-hydrophobicity, Nano-Struct. Nano-Objects, 21(2020), art. No. 100424. doi: 10.1016/j.nanoso.2020.100424
      [6]
      R.S. Sabry and M.I. Al-Mosawi, Novel approach to fabricate a stable superhydrophobic polycarbonate, Surf. Eng., 34(2018), No. 2, p. 151. doi: 10.1080/02670844.2016.1270620
      [7]
      K. Khanmohammadi Chenab, B. Sohrabi, and A. Rahmanzadeh, Superhydrophobicity: advanced biological and biomedical applications, Biomater. Sci., 7(2019), No. 8, p. 3110. doi: 10.1039/C9BM00558G
      [8]
      . X.T. Zhang, A. Fujishima, M. Jin, A.V. Emeline, and T. Murakami, Double-layered TiO2–SiO2 nanostructured films with self-cleaning and antireflective properties, J. Phys. Chem. B, 110(2006), No. 50, p. 25142. doi: 10.1021/jp064442u
      [9]
      D.S. Bhatkhande, V.G. Pangarkar, and A.A. Beenackers, Photocatalytic degradation for environmental applications – A review, J. Chem. Technol. Biotechnol., 77(2002), No. 1, p. 102. doi: 10.1002/jctb.532
      [10]
      T.J. Whang, M.T. Hsieh, and H.H. Chen, Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles, Appl. Surf. Sci., 258(2012), No. 7, p. 2796. doi: 10.1016/j.apsusc.2011.10.134
      [11]
      Y.H. Zheng, C.Q. Chen, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, and J.F. Zhu, Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: Correlation between structure and property, J. Phys. Chem. C, 112(2008), No. 29, p. 10773. doi: 10.1021/jp8027275
      [12]
      G.S. Parkinson, Iron oxide surfaces, Surf. Sci. Rep., 71(2016), No. 1, p. 272. doi: 10.1016/j.surfrep.2016.02.001
      [13]
      Y. Wu, B. Dong, J. Zhang, H.B. Song, and C.J. Yan, The synthesis of ZnO/SrTiO3 composite for high-efficiency photocatalytic hydrogen and electricity conversion, Int. J. Hydrogen Energy, 43(2018), No. 28, p. 12627. doi: 10.1016/j.ijhydene.2018.03.206
      [14]
      Z.F. Dong, Y. Wu, N. Thirugnanam, and G.L. Li, Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production, Appl. Surf. Sci., 430(2018), p. 293. doi: 10.1016/j.apsusc.2017.07.186
      [15]
      A.B. Gurav, S.S. Latthe, R.S. Vhatkar, J.G. Lee, D.Y. Kim, J.J. Park, and S.S. Yoon, Superhydrophobic surface decorated with vertical ZnO nanorods modified by stearic acid, Ceram. Int., 40(2014), No. 5, p. 7151. doi: 10.1016/j.ceramint.2013.12.052
      [16]
      C.S. Chen, W. Mei, C. Wang, Z. Yang, X.A. Chen, X.H. Chen, and T.G. Liu, Synthesis of a flower-like SnO/ZnO nanostructure with high catalytic activity and stability under natural sunlight, J. Alloys Compd., 826(2020), art. No. 154122. doi: 10.1016/j.jallcom.2020.154122
      [17]
      C.S. Chen, X.Y. Liu, Q. Fang, X.H. Chen, T.G. Liu, and M.S. Zhang, Self-assembly synthesis of CuO/ZnO hollow microspheres and their photocatalytic performance under natural sunlight, Vacuum, 174(2020), art. No. 109198. doi: 10.1016/j.vacuum.2020.109198
      [18]
      R.D. Suryavanshi, S.V. Mohite, A.A. Bagade, and K.Y. Rajpure, Photoelectrocatalytic activity of spray deposited Fe2O3/ZnO photoelectrode for degradation of salicylic acid and methyl orange dye under solar radiation, Mater. Sci. Eng. B, 248(2019), art. No. 114386. doi: 10.1016/j.mseb.2019.114386
      [19]
      N. Saleema and M. Farzaneh, Thermal effect on superhydrophobic performance of stearic acid modified ZnO nanotowers, Appl. Surf. Sci., 254(2008), No. 9, p. 2690. doi: 10.1016/j.apsusc.2007.10.004
      [20]
      R.X. Chen, Y.Q. Wan, W.W. Wu, C. Yang, J.H. He, J.H. Cheng, R. Jetter, F.K. Ko, and Y.C. Chen, A lotus effect-inspired flexible and breathable membrane with hierarchical electrospinning micro/nanofibers and ZnO nanowires, Mater. Des., 162(2019), p. 246. doi: 10.1016/j.matdes.2018.11.041
      [21]
      B. Dong, X.X. Yu, Z.F. Dong, X. Yang, and Y. Wu, Facile synthesis of ZnO nanoparticles for the photocatalytic degradation of methylene blue, J. Sol-Gel Sci. Technol., 82(2017), No. 1, p. 167. doi: 10.1007/s10971-016-4297-4
      [22]
      X.X. Yu, Y. Wu, B. Dong, Z.F. Dong, and X. Yang, Enhanced solar light photocatalytic properties of ZnO nanocrystals by Mg-doping via polyacrylamide polymer method, J. Photochem. Photobiol. A, 356(2018), p. 681. doi: 10.1016/j.jphotochem.2016.05.006
      [23]
      Z.N. Kayani, E. Abbas, Z. Saddiqe, S. Riaz, and S. Naseem, Photocatalytic, antibacterial, optical and magnetic properties of Fe-doped ZnO nano-particles prepared by sol–gel, Mater. Sci. Semicond. Process., 88(2018), p. 109. doi: 10.1016/j.mssp.2018.08.003
      [24]
      P.P. Sahay and R.K. Nath, Al-doped ZnO thin films as methanol sensors, Sens. Actuat. B, 134(2008), No. 2, p. 654. doi: 10.1016/j.snb.2008.06.006
      [25]
      B. Gong, Q. Peng, J.S. Na, and G.N. Parsons, Highly active photocatalytic ZnO nanocrystalline rods supported on polymer fiber mats: Synthesis using atomic layer deposition and hydrothermal crystal growth, Appl. Catal. A, 407(2011), No. 1-2, p. 211. doi: 10.1016/j.apcata.2011.08.041
      [26]
      X.J. Wang, Q.L. Zhang, Q. Wan, G.Z. Dai, C.J. Zhou, and B.S. Zou, Controllable ZnO architectures by ethanolamine-assisted hydrothermal reaction for enhanced photocatalytic activity, J. Phys. Chem. C, 115(2011), No. 6, p. 2769. doi: 10.1021/jp1096822
      [27]
      W.P. Cai, G.T. Duan, and Y. Li, Hierarchical Micro/Nanostructured Materials: Fabrication, Properties, and Applications, CRC Press, 2014.
      [28]
      M.T.Z. Myint, S.H. Al-Harthi, and J. Dutta, Brackish water desalination by capacitive deionization using zinc oxide micro/nanostructures grafted on activated carbon cloth electrodes, Desalination, 344(2014), p. 236. doi: 10.1016/j.desal.2014.03.037
      [29]
      T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95(1805), p. 65. doi: 10.1098/rstl.1805.0005
      [30]
      R.N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28(1936), No. 8, p. 988. doi: 10.1021/ie50320a024
      [31]
      E.H. Yildirim and C.E. Cansoy, Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces, Langmuir, 25(2009), No. 24, p. 14135. doi: 10.1021/la902098a
      [32]
      J.R. Loften, J.G. Linn, J.K. Drackley, T.C. Jenkins, C.G. Soderholm, and A.F. Kertz, Invited review: Palmitic and stearic acid metabolism in lactating dairy cows, J. Dairy Sci., 97(2014), No. 8, p. 4661. doi: 10.3168/jds.2014-7919
      [33]
      J. Zhang, Z.H. Liu, J.Q. Liu, E. Lei, and Z.F. Liu, Effects of seed layers on controlling of the morphology of ZnO nanostructures and superhydrophobicity of ZnO nanostructure/stearic acid composite films, Mater. Chem. Phys., 183(2016), p. 306. doi: 10.1016/j.matchemphys.2016.08.031
      [34]
      A.B. Lavand and Y.S. Malghe, Synthesis, characterization and visible light photocatalytic activity of carbon and iron modified ZnO, J. King Saud Univ. Sci., 30(2018), No. 1, p. 65. doi: 10.1016/j.jksus.2016.08.009
      [35]
      C. Han, L.B. Duan, X.R. Zhao, Z.M. Hu, Y.F. Niu, and W.C. Geng, Effect of Fe doping on structural and optical properties of ZnO films and nanorods, J. Alloys Compd., 770(2019), p. 854. doi: 10.1016/j.jallcom.2018.08.217
      [36]
      M.A.M. Khan, W. Khan, M. Ahamed, and A.N. Alhazaa, Investigation on the structure and physical properties of Fe3O4/RGO nanocomposites and their photocatalytic application, Mater. Sci. Semicond. Process., 99(2019), p. 44.
      [37]
      J. Rawat, S. Rana, R. Srivastava, and R.D.K. Misra, Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core, Mater. Sci. Eng. C, 27(2007), No. 3, p. 540. doi: 10.1016/j.msec.2006.05.021
      [38]
      S.S. Jia, Y. Lu, S. Luo, Y. Qing, Y.Q. Wu, and I.P. Parkin, Thermally-induced all-damage-healable superhydrophobic surface with photocatalytic performance from hierarchical BiOCl, Chem. Eng. J., 366(2019), p. 439. doi: 10.1016/j.cej.2019.02.104
      [39]
      X. Li, J. Yu, and M. Jaroniec, Hierarchical photocatalysts, Chem. Soc. Rev., 45(2016), No. 9, p. 2603. doi: 10.1039/C5CS00838G

    Catalog


    • /

      返回文章
      返回