留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 4
Apr.  2021

图(9)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  3322
  • HTML全文浏览量:  796
  • PDF下载量:  81
  • 被引次数: 0
Okan Unal, Erfan Maleki, and Remzi Varol, Comprehensive analysis of pulsed plasma nitriding preconditions on the fatigue behavior of AISI 304 austenitic stainless steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 657-664. https://doi.org/10.1007/s12613-020-2097-x
Cite this article as:
Okan Unal, Erfan Maleki, and Remzi Varol, Comprehensive analysis of pulsed plasma nitriding preconditions on the fatigue behavior of AISI 304 austenitic stainless steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 657-664. https://doi.org/10.1007/s12613-020-2097-x
引用本文 PDF XML SpringerLink
研究论文

脉冲等离子渗氮预处理后对AISI304奥氏体不锈钢疲劳行为的综合分析

  • Research Article

    Comprehensive analysis of pulsed plasma nitriding preconditions on the fatigue behavior of AISI 304 austenitic stainless steel

    + Author Affiliations
    • This study aims to draw an exact boundary for microstructural and mechanical behaviors in terms of pulsed plasma nitriding conditions. The pulsed plasma nitriding treatment was applied to AISI 304 austenitic stainless steel at different temperatures and durations. Results reveal that nitriding depth increased as process temperature and duration increase. The nitriding depth remarkably increased at 475°C for 8 h and at 550°C for 4 h. An austenite structure was transformed into a metastable nitrogen-oversaturated body-centered tetragonal expanded austenite (S-phase) during low-temperature plasma nitriding. The S-phase was converted to CrN precipitation at 475°C for 8 h and at 550°C for 4 h. Surface hardness and fatigue limit increased through plasma nitriding regardless of process conditions. The best surface hardness and fatigue limit were obtained at 550°C for 4 h because of the occurrence of CrN precipitation.

    • loading
    • [1]
      Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, and L. Zuo, Twinning and martensite in a 304 austenitic stainless steel, Mater. Sci. Eng. A, 552(2012), p. 514. doi: 10.1016/j.msea.2012.05.080
      [2]
      O. Unal and R. Varol, Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening, Appl. Surf. Sci., 351(2015), p. 289. doi: 10.1016/j.apsusc.2015.05.093
      [3]
      H.Y. Shen and L. Wang, Corrosion resistance and electrical conductivity of plasma nitrided titanium, Int. J. Hydrogen Energy, 46(2021), No. 19, p. 11084. doi: 10.1016/j.ijhydene.2020.08.242
      [4]
      S. Liu, S.Y. Gao, Y.F. Zhou, X.L. Xing, X.R. Hou, Y.L. Yang, and Q.X. Yang, A research on the microstructure evolution of austenite stainless steel by surface mechanical attrition treatment, Mater. Sci. Eng. A, 617(2014), p. 127. doi: 10.1016/j.msea.2014.08.049
      [5]
      K. Zhan, C.H. Jiang, and V. Ji, Effect of prestress state on surface layer characteristic of S30432 austenitic stainless steel in shot peening process, Mater. Des., 42(2012), p. 89. doi: 10.1016/j.matdes.2012.05.053
      [6]
      O. Unal, Optimization of shot peening parameters by response surface methodology, Surf. Coat. Technol., 305(2016), p. 99. doi: 10.1016/j.surfcoat.2016.08.004
      [7]
      O. Unal and E. Maleki, Shot peening optimization with complex decision-making tool: Multi criteria decision-making, Measurement, 125(2018), p. 133. doi: 10.1016/j.measurement.2018.04.077
      [8]
      O. Unal, E. Maleki, I. Kocabas, H. Yilmaz, and F. Husem, Investigation of nanostructured surface layer of severe shot peened AISI 1045 steel via response surface methodology, Measurement, 148(2019), art. No. 106960. doi: 10.1016/j.measurement.2019.106960
      [9]
      A. Amanov, R. Karimbaev, E. Maleki, O. Unal, Y.S. Pyun, and T. Amanov, Effect of combined shot peening and ultrasonic nanocrystal surface modification processes on the fatigue performance of AISI 304, Surf. Coat. Technol., 358(2019), p. 695. doi: 10.1016/j.surfcoat.2018.11.100
      [10]
      O. Unal, E. Maleki, and R. Varol, Plasma nitriding of gradient structured AISI 304 at low temperature: Shot peening as a catalyst treatment, Vacuum, 164(2019), p. 194. doi: 10.1016/j.vacuum.2019.03.027
      [11]
      O. Unal, E. Maleki, and R. Varol, Effect of severe shot peening and ultra-low temperature plasma nitriding on Ti–6Al–4V alloy, Vacuum, 150(2018), p. 69. doi: 10.1016/j.vacuum.2018.01.027
      [12]
      L. Ceschini, C. Chiavari, E. Lanzoni, and C. Martini, Low-temperature carburised AISI 316L austenitic stainless steel: Wear and corrosion behaviour, Mater. Des., 38(2012), p. 154. doi: 10.1016/j.matdes.2012.02.019
      [13]
      K.L. Ou, H.H. Chou, C.M. Liu, and P.W. Peng, Surface modification of austenitic stainless steel with plasma nitriding for biomedical applications, Surf. Coat. Technol., 206(2011), No. 6, p. 1142. doi: 10.1016/j.surfcoat.2011.08.001
      [14]
      K.J. Lin, X.Y. Li, H.S. Dong, P. Guo, and D.D. Gu, Nitrogen mass transfer and surface layer formation during the active screen plasma nitriding of austenitic stainless steels, Vacuum, 148(2018), p. 224. doi: 10.1016/j.vacuum.2017.11.022
      [15]
      Y.D. Zhu, J.W. Yao, M.F. Yan, Y.X. Zhang, Y.X. Wang, Y. Yang, and L. Yang, High temperature plasma nitriding to modify Ti coated C17200 Cu surface: Microstructure and tribological properties, Vacuum, 147(2018), p. 163. doi: 10.1016/j.vacuum.2017.10.011
      [16]
      J. Schuster, E. Bruder, and C. Müller, Plasma nitriding of steels with severely plastic deformed surfaces, J. Mater. Sci., 47(2012), No. 22, p. 7908. doi: 10.1007/s10853-012-6566-0
      [17]
      N. Kashaev, H.R. Stock, and P. Mayr, Nitriding of Ti–6%Al–4%V alloy in the plasma of an intensified glow discharge, Met. Sci. Heat Treat., 46(2004), p. 294. doi: 10.1023/B:MSAT.0000048837.39784.e2
      [18]
      K. Nikolov, K. Bunk, A. Jung, P. Kaestner, G. Bräuer, and C.P. Klages, High-efficient surface modification of thin austenitic stainless steel sheets applying short-time plasma nitriding by means of strip hollow cathode method for plasma thermochemical treatment, Vacuum, 110(2014), p. 106. doi: 10.1016/j.vacuum.2014.09.002
      [19]
      L. Qin, L.H. Tian, A.L. Fan, B. Tang, and Z. Xu, Fatigue behavior of surface modified Ti–6Al–4V alloy by double glow discharge plasma alloying, Surf. Coat. Technol, 201(2007), No. 9-11, p. 5282. doi: 10.1016/j.surfcoat.2006.07.180
      [20]
      Z. Huang, Z.X. Guo, L. Liu, Y.Y. Guo, J. Chen, Z. Zhang, J.L. Li, Y. Li, Y.W. Zhou, and Y.S. Liang, Structure and corrosion behavior of ultra-thick nitrided layer produced by plasma nitriding of austenitic stainless steel, Surf. Coat. Technol., 405(2021), art. No. 126689. doi: 10.1016/j.surfcoat.2020.126689
      [21]
      S. Corujeira Gallo and H. Dong, On the fundamental mechanisms of active screen plasma nitriding, Vacuum, 84(2009), No. 2, p. 321. doi: 10.1016/j.vacuum.2009.07.002
      [22]
      H. Aghajani, M. Torshizi, and M. Soltanieh, A new model for growth mechanism of nitride layers in plasma nitriding of AISI H11 hot work tool steel, Vacuum, 141(2017), p. 97. doi: 10.1016/j.vacuum.2017.03.032
      [23]
      A. Yazdani, M. Soltanieh, and H. Aghajani, Active screen plasma nitriding of Al using an iron cage: Characterization and evaluation, Vacuum, 122(2015), p. 127. doi: 10.1016/j.vacuum.2015.09.018
      [24]
      Y.H. Zhao, B.H. Yu, L.M. Dong, H. Du, and J.Q. Xiao, Low-pressure arc plasma-assisted nitriding of AISI 304 stainless steel, Surf. Coat. Technol., 210(2012), p. 90. doi: 10.1016/j.surfcoat.2012.08.070
      [25]
      J. Morgiel and T. Wierzchoń, New estimate of phase sequence in diffusive layer formed on plasma nitrided Ti–6Al–4V alloy, Surf. Coat. Technol., 259(2014), p. 473. doi: 10.1016/j.surfcoat.2014.10.043
      [26]
      R. Kertscher and S.F., Brunatto On the kinetics of nitride and diffusion layer growth in niobium plasma nitriding, Surf. Coat. Technol., 401(2020), art. No. 126220. doi: 10.1016/j.surfcoat.2020.126220
      [27]
      J. Fernández de Ara, E. Almandoz, J.F. Palacio, and G.G. Fuentes, Simultaneous ageing and plasma nitriding of grade 300 maraging steel: How working pressure determines the effective nitrogen diffusion into narrow cavities, Surf. Coat. Technol., 317(2017), p. 64. doi: 10.1016/j.surfcoat.2017.02.060
      [28]
      T.T. Peng, Y. Chen, X.L. Liu, M.H. Wu, Y.Y. Lu, and J. Hu, Phase constitution control of plasma nitrided layer and its effect on wear behavior under different loads, Surf. Coat. Technol., 403(2020), art. No. 126403. doi: 10.1016/j.surfcoat.2020.126403
      [29]
      L. Shen, L. Wang, Y.Z. Wang, and C.H. Wang, Plasma nitriding of AISI 304 austenitic stainless steel with pre-shot peening, Surf. Coat. Technol., 204(2010), No. 20, p. 3222. doi: 10.1016/j.surfcoat.2010.03.018
      [30]
      R. Valencia-Alvarado, A. de la Piedad-Beneitez, J. de la Rosa-Vázquez, R. López-Callejas, S.R. Barocio, O.G. Godoy-Cabrera, A. Mercado-Cabrera, R. Peña-Eguiluz, and A. E. Muñoz-Castro, Nitriding of AISI 304 stainless steel in a 85% H2/15% N2 mixture with an inductively coupled plasma source, Vacuum, 82(2008), No. 12, p. 1360. doi: 10.1016/j.vacuum.2008.03.087
      [31]
      J.C. Díaz-Guillén, M. Naeem, J.L. Acevedo-Dávila, H.M. Hdz-García, J. Iqbal, M.A. Khan, and J. Mayen, Improved mechanical properties, wear and corrosion resistance of 316L steel by homogeneous chromium nitride layer synthesis using plasma nitriding, J. Mater. Eng. Perform., 29(2020), No. 2, p. 877. doi: 10.1007/s11665-020-04653-9
      [32]
      S.J. Lu, X.B. Zhao, S.K. Wang, J.C. Li, W. Wei, and J. Hu, Performance enhancement by plasma nitriding at low gas pressure for 304 austenitic stainless steel, Vacuum, 145(2017), p. 334. doi: 10.1016/j.vacuum.2017.09.020
      [33]
      R. Valencia-Alvarado, A. de la Piedad-Beneitez, J. de la Rosa-Vázquez, R. López-Callejas, S.R. Barocio, O.G. Godoy-Cabrera, A. Mercado-Cabrera, R. Peña-Eguiluz, and A. E. Muñoz-Castro, γN-shift as a function of N2 content in AISI 304 nitriding, Vacuum, 81(2007), No. 11-12, p. 1434. doi: 10.1016/j.vacuum.2007.04.020
      [34]
      K. Nikolov, K. Köster, P. Kaestner, G. Bräuer, and C.P. Klages, Strip hollow cathode method for plasma thermochemical treatment for surface modification of thin metal strips: Plasma nitriding of austenitic stainless steel sheets for bipolar plates, Vacuum, 102(2014), p. 31. doi: 10.1016/j.vacuum.2013.11.001
      [35]
      A. de la Piedad-Beneitez, R. Valencia-Alvarado, R. López-Callejas, I. A. Rojas-Olmedo, R. Peña-Eguiluz, A. Mercado-Cabrera, S.R. Barocio, A.E. Muñoz-Castro, and B.G. Rodríguez-Méndez, Optimized AISI 304 steel nitriding in inductive RF N2–H2 plasmas, Vacuum, 85(2011), No. 12, p. 1149. doi: 10.1016/j.vacuum.2011.01.023
      [36]
      J. Alphonsa, B.A. Padsala, B.J. Chauhan, G. Jhala, P.A. Rayjada, N. Chauhan, S.N. Soman, and P.M. Raole, Plasma nitriding on welded joints of AISI 304 stainless steel, Surf. Coat. Technol., 228(2013), Suppl. 1, p. s306. doi: https://doi.org/10.1016/j.surfcoat.2012.05.113
      [37]
      S.K. Wang, W. Cai, J.C. Li, W. Wei, and J. Hu, A novel rapid D.C. plasma nitriding at low gas pressure for 304 austenitic stainless steel, Mater. Lett., 105(2013), p. 47. doi: 10.1016/j.matlet.2013.04.031
      [38]
      J.C. Díaz-Guillén, G. Vargas-Gutiérrez, E.E. Granda-Gutiérrez, J.S. Zamarripa-Piña, S. I. Pérez-Aguilar, J. Candelas-Ramírez, and L. Álvarez-Contreras, Surface properties of Fe4N compounds layer on aisi 4340 steel modified by pulsed plasma nitriding, J. Mater. Sci. Technol., 29(2013), No. 3, p. 287. doi: 10.1016/j.jmst.2013.01.017
      [39]
      M. Asgari, A. Barnoush, R. Johnsen, and R. Hoel, Microstructural characterization of pulsed plasma nitrided 316L stainless steel, Mater. Sci. Eng. A, 529(2011), p. 425. doi: 10.1016/j.msea.2011.09.055
      [40]
      J.N. Feugeas, B.J. Gomez, G. Sánchez, J. Ferron, and A. Craievich, Time evolution of Cr and N on AISI 304 steel surface during pulsed plasma ion nitriding, Thin Solid Films, 424(2003), No. 1, p. 130. doi: 10.1016/S0040-6090(02)00912-4
      [41]
      W. Liang, Surface modification of AISI 304 austenitic stainless steel by plasma nitriding, Appl. Surf. Sci., 211(2003), No. 1-4, p. 308. doi: 10.1016/S0169-4332(03)00260-5
      [42]
      T. Balusamy, T.S.N. Sankara Narayanan, K. Ravichandran, I.S. Park, and M.H. Lee, Plasma nitriding of AISI 304 stainless steel: Role of surface mechanical attrition treatment, Mater. Charact., 85(2013), p. 38. doi: 10.1016/j.matchar.2013.08.009
      [43]
      A. Galdikas and T. Moskalioviene, Modeling of stress induced nitrogen diffusion in nitrided stainless steel, Surf. Coat. Technol., 205(2011), No. 12, p. 3742. doi: 10.1016/j.surfcoat.2011.01.040
      [44]
      T. Moskalioviene, A. Galdikas, J.P. Rivière, and L. Pichon, Modeling of nitrogen penetration in polycrystalline AISI 316L austenitic stainless steel during plasma nitriding, Surf. Coat. Technol., 205(2011), No. 10, p. 3301. doi: 10.1016/j.surfcoat.2010.11.060
      [45]
      G.P. Singh, A. Joseph, P.M. Raole, P.K. Barhai, and S. Mukherjee, Phase formation in selected surface-roughened plasma-nitrided 304 austenite stainless steel, Sci. Technol. Adv. Mater., 9(2008), No. 2, art. No. 025007. doi: 10.1088/1468-6996/9/2/025007
      [46]
      Y.Q. Xia, J.H. Hu, F. Zhou, Y.M. Lin, Y.L. Qiao, and T. Xu, Friction and wear behavior of plasma nitrided 1Cr18Ni9Ti austenitic stainless steel under lubrication condition, Mater. Sci. Eng. A, 402(2005), No. 1-2, p. 135. doi: 10.1016/j.msea.2005.04.012
      [47]
      L.H. Lin, S.C. Chen, C.Z. Wu, J.M. Hung, and K.L. Ou, Microstructure and antibacterial properties of microwave plasma nitrided layers on biomedical stainless steels, Appl. Surf. Sci., 257(2011), No. 17, p. 7375. doi: 10.1016/j.apsusc.2011.01.065
      [48]
      L.C. Gontijo, R. Machado, E.J. Miola, L.C. Casteletti, N.G. Alcantara, and P.A.P. Nascente, Study of the S phase formed on plasma-nitrided AISI 316L stainless steel, Mater. Sci. Eng. A, 431(2006), No. 1-2, p. 315. doi: 10.1016/j.msea.2006.06.023
      [49]
      D. Pye, Practical Nitriding and Ferritic Carburising, ASM International, Ohio, 2003.
      [50]
      F. Ashrafizadeh, Influence of plasma and gas nitriding on fatigue resistance of plain carbon (Ck45) steel, Surf. Coat. Technol., 174-175(2003), p. 1196. doi: 10.1016/S0257-8972(03)00460-2
      [51]
      H. Riazi, F. Ashrafizadeh, S.R. Hosseini, and R. Ghomashchi, Influence of simultaneous aging and plasma nitriding on fatigue performance of 17-4 PH stainless steel, Mater. Sci. Eng. A, 703(2017), p. 262. doi: 10.1016/j.msea.2017.07.070
      [52]
      B. Wu, P.P. Wang, Y.S. Pyoun, J.X. Zhang, and R.I. Murakami, Study on the fatigue properties of plasma nitriding S45C with a pre-ultrasonic nanocrystal surface modification process, Surf. Coat. Technol., 216(2013), p. 191. doi: 10.1016/j.surfcoat.2012.11.033

    Catalog


    • /

      返回文章
      返回