留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 12
Dec.  2021

图(10)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  3344
  • HTML全文浏览量:  700
  • PDF下载量:  119
  • 被引次数: 0
Hamed Gholami, Bahram Rezai, Ahmad Hassanzadeh, Akbar Mehdilo, and Mohammadreza Yarahmadi, Effect of microwave pretreatment on grinding and flotation kinetics of copper complex ore, Int. J. Miner. Metall. Mater., 28(2021), No. 12, pp. 1887-1897. https://doi.org/10.1007/s12613-020-2106-0
Cite this article as:
Hamed Gholami, Bahram Rezai, Ahmad Hassanzadeh, Akbar Mehdilo, and Mohammadreza Yarahmadi, Effect of microwave pretreatment on grinding and flotation kinetics of copper complex ore, Int. J. Miner. Metall. Mater., 28(2021), No. 12, pp. 1887-1897. https://doi.org/10.1007/s12613-020-2106-0
引用本文 PDF XML SpringerLink
研究论文

微波预处理对复杂铜矿磨矿及浮选动力学的影响

  • Research Article

    Effect of microwave pretreatment on grinding and flotation kinetics of copper complex ore

    + Author Affiliations
    • The present study initially investigates the kinetics of microwave-assisted grinding and flotation in a porphyry copper deposit. Kinetic tests were conducted on untreated and microwave-irradiated samples by varying the exposure time from 15 to 150 s. Optical microscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy were conducted to determine the mineral liberation and particle surface properties, and to perform mineralogical analyses. Results showed that the ore breakage rate constant monotonically increased by increasing the exposure time, particularly for the coarsest fraction size (400 µm) due to the creation of thermal stress fractures alongside grain boundaries. Excessive irradiation time (>60 s) led to the creation of oxidized and porous surfaces along with a dramatic change in particle morphologies that result in a substantial reduction of chalcopyrite and pyrite flotation rate constants and ultimate recoveries. We concluded that MW-pretreated copper ore was ground faster than the untreated variety, but the two types have slightly similar floatabilities.

    • loading
    • [1]
      S.M. Bradshaw, Application of microwave heating in mineral processing, S. Afr. J. Sci., 95(1999), No. 9, p. 394.
      [2]
      K.E. Haque, Microwave energy for mineral treatment processes—a brief review, Int. J. Miner. Process., 57(1999), No. 1, p. 1. doi: 10.1016/S0301-7516(99)00009-5
      [3]
      S.W. Kingman, Recent developments in microwave processing of minerals, Int. Mater. Rev., 51(2006), No. 1, p. 1. doi: 10.1179/174328006X79472
      [4]
      S.M.J. Koleini and K. Barani, Microwave heating applications in mineral processing, [in] W.B. Cao, ed., The Development and Application of Microwave Heating, InTech, 2012, p. 212.
      [5]
      Z.W. Peng and J.Y. Hwang, Microwave-assisted metallurgy, Int. Mater. Rev., 60(2015), No. 1, p. 30. doi: 10.1179/1743280414Y.0000000042
      [6]
      R.K. Amankwah, A.U. Khan, C.A. Pickles, and W.T. Yen, Improved grindability and gold liberation by microwave pretreatment of a free-milling gold ore, Min. Proc. Ext. Met. Rev., 114(2005), No. 1, p. 30. doi: 10.1179/037195505X28447
      [7]
      V. Rizmanoski, The effect of microwave pretreatment on impact breakage of copper ore, Miner. Eng., 24(2011), No. 14, p. 1609. doi: 10.1016/j.mineng.2011.08.017
      [8]
      Y.J. Liu, T. Jiang, Z. Deng, X.X. Xue, and P.N. Duan, Stuy on microwave-assisted grinding of low-grade Ludwigite, Mater. Sci. Forum, 814(2015), p. 214. doi: 10.4028/www.scientific.net/MSF.814.214
      [9]
      A.L. Mendoza and J.A.D. Gómez, Effect of microwave pretreatment on grinding of iron ore, Asian. J. Chem., 29(2017), No. 5, p. 983. doi: 10.14233/ajchem.2017.20365
      [10]
      G. Özbayoğlu, T. Depci, and N. Ataman, Effect of microwave radiation on coal flotation, Energy Sources Part A, 31(2009), No. 6, p. 492. doi: 10.1080/15567030701531337
      [11]
      S.W. Kingman, G.M. Corfield, and N.A. Rowson, Effects of microwave radiation upon the mineralogy and magnetic processing of a massive Norwegian ilmenite ore, Magn. Electr. Sep., 9(1999), No. 3, p. 131. doi: 10.1155/1999/57075
      [12]
      C. Marion, A. Jordens, C. Maloney, R. Langlois, and K.E. Waters, Effect of microwave radiation on the processing of a Cu–Ni sulphide ore, Can. J. Chem. Eng., 94(2016), No. 1, p. 117. doi: 10.1002/cjce.22359
      [13]
      S.W. Kingman, W. Vorster, and N.A. Rowson, The influence of mineralogy on microwave assisted grinding, Miner. Eng., 13(2000), No. 3, p. 313. doi: 10.1016/S0892-6875(00)00010-8
      [14]
      A.Y. Ali, Understanding The Effects of Mineralogy, Ore Texture And Microwave Power Delivery On Microwave Treatment of Ores [Dissertation], University of Stellenbosch, South Africa, 2010.
      [15]
      A.R. Batchelor, A.J. Buttress, D.A. Jones, J. Katrib, D. Way, T. Chenje, D. Stoll, C. Dodds, and S.W. Kingman, Towards large scale microwave treatment of ores: Part 2–Metallurgical testing, Miner. Eng., 111(2017), p. 5. doi: 10.1016/j.mineng.2017.05.003
      [16]
      S.H. Ju, P. Singh, J.H. Peng, A.N. Nikoloski, L. Chao, S.H. Guo, R.P. Das, and L.B. Zhang, Recent developments in the application of microwave energy in process metallurgy at KUST, Miner. Process. Extr. Metall. Rev., 39(2018), No. 3, p. 181. doi: 10.1080/08827508.2017.1401537
      [17]
      S.W. Kingman, K. Jackson, S.M. Bradshaw, N.A. Rowson, and R. Greenwood, An investigation into the influence of microwave treatment on mineral ore comminution, Powder Technol., 146(2004), No. 3, p. 176.y. doi: 10.1016/j.powtec.2004.08.006
      [18]
      R. Hendaa, A. Hermasa, R. Gedyeb, and M.R. Islamc, Microwave enhanced recovery of nickel–copper ore: Communition and floatability aspects, J. Microwave Power Electromagn. Energy, 40(2005), No. 1, p. 7. doi: 10.1080/08327823.2005.11688522
      [19]
      M. Lovás, I. Murová, A. Mockovciaková, N. Rowson, and Š. Jakabský, Intensification of magnetic separation and leaching of Cu-ores by microwave radiation, Sep. Purif. Technol., 31(2003), No. 3, p. 291. doi: 10.1016/S1383-5866(02)00206-X
      [20]
      I. Znamenáčková, M. Lovás, A. Mockovčiaková, Š. Jakabský, and J. Briančin, Modification of magnetic properties of siderite ore by microwave energy, Sep. Purif. Technol., 43(2005), No. 2, p. 169. doi: 10.1016/j.seppur.2004.11.002
      [21]
      S.L. McGill, J.W. Walkiewicz, and G.A. Smyres, The effects of power level on the microwave heating of selected chemicals and minerals, MRS Online Proceedings Library, 124(1988), p. 247. doi: 10.1557/PROC-124-247
      [22]
      A.R. Batchelor, D.A. Jones, S. Plint, and S.W. Kingman, Increasing the grind size for effective liberation and flotation of a porphyry copper ore by microwave treatment, Miner. Eng., 94(2016), p. 61. doi: 10.1016/j.mineng.2016.05.011
      [23]
      S.M.S. Azghadi and K. Barani, Effect of microwave treatment on the surface properties of chalcopyrite, Min. Metall. Proc., 35(2018), No. 3, p. 141. doi: 10.19150/mmp.8463
      [24]
      G.R. da Silva and K.E Waters, The effects of microwave irradiation on the floatability of chalcopyrite, pentlandite and pyrrhotite, Adv. Powder Technol., 29(2018), No. 12, p. 3049. doi: 10.1016/j.apt.2018.07.025
      [25]
      S.W. Kingman, W. Vorster, and N.A. Rowson, The effect of microwave radiation on the processing of Palabora copper ore, J. South Afr. Inst. Min. Metall., 100(2000), No. 3, p. 197.
      [26]
      W. Vorster, N.A. Rowson, and S.W. Kingman, The effect of microwave radiation upon the processing of Neves Corvo copper ore, Int. J. Miner. Process., 63(2001), No. 1, p. 29. doi: 10.1016/S0301-7516(00)00069-7
      [27]
      C. Sahyoun, N.A. Rowson, S.W. Kingman, L. Groves, and S.M. Bradshaw, The influence of microwave pre-treatment on copper flotation, J. South Afr. Inst. Min. Metall., 105(2005), No. 1, p. 7.
      [28]
      H. Gholami, B. Rezai, A. Mehdilo, A. Hassanzadeh, and M.R. Yarahmadi, Effect of microwave system location on floatability of chalcopyrite and pyrite in a copper ore processing circuit, Physicochem. Probl. Miner. Process., 56(2020), No. 3, p. 432. doi: 10.37190/ppmp/118799
      [29]
      A. Hassanzadeh, A. Azizi, S. Kouachi, M. Karimi, and M.S. Celik, Estimation of flotation rate constant and particle-bubble interactions considering key hydrodynamic parameters and their interrelations, Miner. Eng., 141(2019), art. No. 105836. doi: 10.1016/j.mineng.2019.105836
      [30]
      V.K. Gupta, Determination of the specific breakage rate parameters using the top-size-fraction method: Preparation of the feed charge and design of experiments, Adv. Powder Technol., 27(2016), No. 4, p. 1710. doi: 10.1016/j.apt.2016.06.002
      [31]
      A. Hassanzadeh, D. Huu Hoang, and M. Brockmann, Assessment of flotation kinetics modeling using information criteria; case studies of elevated-pyritic copper sulfide and high-grade carbonaceous sedimentary apatite ores, J. Dispersion Sci. Technol., 41(2020), No. 7, p. 1083. doi: 10.1080/01932691.2019.1656640
      [32]
      S.M. Javad Koleini, K. Barani, and B. Rezaei, The effect of microwave treatment upon dry grinding kinetics of an iron ore, Miner. Process. Extr. Metall. Rev., 33(2012), No. 3, p. 159. doi: 10.1080/08827508.2011.562947
      [33]
      M. Heshami, R. Ahmadi, and E. Rahimi, The effect of microwave radiation on grinding kinetics by selection function and breakage function-A case study of low-grade siliceous manganese ores, J. Part. Sci. Technol., 4(2018), No. 1, p. 39. doi: 10.22104/jpst.2018.2992.1129
      [34]
      P. Kumar, B.K. Sahoo, S. De, D.D. Kar, S. Chakraborty, and B.C. Meikap, Iron ore grindability improvement by microwave pre-treatment, J. Ind. Eng. Chem., 16(2010), No. 5, p. 805. doi: 10.1016/j.jiec.2010.05.008
      [35]
      B.K. Sahoo, S. De, and B.C. Meikap., Improvement of grinding characteristics of Indian coal by microwave pre-treatment, Fuel Process. Technol., 92(2011), No. 10, p. 1920. doi: 10.1016/j.fuproc.2011.05.012
      [36]
      A. Hassanzadeh, A new statistical view to modeling of particle residence time distribution in full-scale overflow ball mill operating in closed-circuit, Geosystem Eng., 21(2018), No. 4, p. 199. doi: 10.1080/12269328.2017.1392900
      [37]
      A. Hassanzadeh, A survey on troubleshooting of closed-circuit grinding system, Can. Metall. Q., 57(2018), No. 3, p. 328. doi: 10.1080/00084433.2018.1464618
      [38]
      A. Hassanzadeh, Increasing primary grinding circuit efficiency considering grinding capacity enhancement, [in] XVI Balkan Mineral Processing Congress, Belgrade, Serbia, 2015, 171-177.
      [39]
      A. Hassanzadeh and F. Karakaş, Recovery improvement of coarse particles by stage addition of reagents in industrial copper flotation circuit, J. Dispersion Sci. Technol., 38(2017), No. 2, p. 309. doi: 10.1080/01932691.2016.1164061
      [40]
      H. Gholami, B. Rezai, A. Hassanzadeh, A. Mehdilo, M.R. Yarahmadi, and M. Rudolph, Impact of microwave treatment location on floatability of chalcopyrite and pyrite: A case study of Sarcheshmeh copper complex ore, [in] XVIII Balkan Mineral Processing Congress, Durres, Albania, 2019, p.155.
      [41]
      H. Gholami, B. Rezai, A. Hassanzadeh, A. Mehdilo and M.B. Jabbari, The effect of microwave’s location in a comminution circuit on improving grindability of a porphyry copper deposit, Energy Sources, Part A Recover. Util. Environ. Eff., (2020), p. 1. doi: 10.1080/15567036.2020.1753859
      [42]
      S. Agheli, A. Hassanzadeh, B.V. Hassas, and M. Hasanzadeh, Effect of pyrite content of feed and configuration of locked particles on rougher flotation of copper in low and high pyritic ore types, Int. J. Min. Sci. Technol., 28(2018), No. 2, p. 167. doi: 10.1016/j.ijmst.2017.12.002
      [43]
      A.M. Gaudin, Principles of Mineral Dressing, McGraw Hill, New York, 1939.
      [44]
      P. Vallejos, J. Yianatos, L. Vinnett, and L. Bergh, Characterization of the industrial flotation process based on size-liberation relationships, Miner. Eng., 121(2018), p. 189. doi: 10.1016/j.mineng.2018.01.019
      [45]
      C.L. Evans and T.J. Napier-Munn, Estimating error in measurements of mineral grain size distribution, Miner. Eng., 52(2013), p. 198. doi: 10.1016/j.mineng.2013.09.005
      [46]
      A. Rezvani, M.R. Khalesi, Z.S. Mirzaei, and B. Albijanic, Image analysis of liberation spectrum of coarse particles, Adv. Powder Technol., 30(2019), No. 9, p. 1989. doi: 10.1016/j.apt.2019.06.020
      [47]
      A. Hassanzadeh, J.R.A. Godinho, T. Heinig, R. Möcke, D. Ebert, and M. Rudolph, A quantitative and comparative laboratory analyses of X-ray computed tomography and mineral liberation analyzer, [in] 15th International Mineral Processing Conference, Santiago, Chile, 2019, p. 1.
      [48]
      A. Hassanzadeh, The effect of make-up ball size regime on grinding efficiency of full-scale ball mill, [in] XVII Balkan Mineral Processing Congress, Antalya, 2017, p. 117.
      [49]
      A. Wikedzi, M.A. Arinanda, T. Leißner, U.A. Peuker, and T. Mütze, Breakage and liberation characteristics of low grade sulphide gold ore blends, Miner. Eng., 115(2018), p. 33. doi: 10.1016/j.mineng.2017.10.009
      [50]
      M. Irannajad, A. Farzanegan, and S.M. Razavian, Spreadsheet-based simulation of closed ball milling circuits, Miner. Eng., 19(2006), No. 15, p. 1495. doi: 10.1016/j.mineng.2006.08.010
      [51]
      V.K. Gupta, D. Hodouin, M.A. Berube, and M.D. Everell, The estimation of rate and breakage distribution parameters from batch grinding data for a complex pyritic ore using a back-calculation method, Powder Technol., 28(1981), No. 1, p. 97. doi: 10.1016/0032-5910(81)87016-7
      [52]
      L.G. Austin, P. Bagga, and M. Celik, Breakage properties of some materials in a laboratory ball mill, Powder Technol., 28(1981), No. 2, p. 235. doi: 10.1016/0032-5910(81)87049-0
      [53]
      L.G. Austin and P. Luckie, Methods for determination of breakage distribution parameters, Powder Technol., 5(1972), No. 4, p. 215. doi: 10.1016/0032-5910(72)80022-6
      [54]
      D.Yan and R. Eaton, Breakage properties of ore blends, Miner. Eng., 7(1994), No. 2-3, p. 185. doi: 10.1016/0892-6875(94)90063-9
      [55]
      H. Cho, J. Kwon, K. Kim, and M. Mun, Optimum choice of the make-up ball sizes for maximum throughput in tumbling ball mills, Powder Technol., 246(2013), p. 625. doi: 10.1016/j.powtec.2013.06.026
      [56]
      A. Hassanzadeh and M. Hasanzadeh, Chalcopyrite and pyrite floatabilities in the presence of sodium sulfide and sodium metabisulfite in a high pyritic copper complex ore, J. Disperion Sci. Technol., 38(2017), No. 6, p. 782. doi: 10.1080/01932691.2016.1194763
      [57]
      A. Azizi, A. Hassanzadeh, and B. Fadaei, Investigating the first-order flotation kinetics models for Sarcheshmeh copper sulfide ore, Int. J. Min. Sci. Technol., 25(2015), No. 5, p. 849. doi: 10.1016/j.ijmst.2015.07.022
      [58]
      H. Garcia-Zuñiga, La recuperación por flotación es una función exponencial del tiempo, Boletín Minero,Sociedad Nacional de Minería, 47(1935), p. 83.
      [59]
      B. Vaziri Hassas, O. Guven, and A. Hassanzadeh, An investigation of the recovery and kinetics during the flotation of residual petroleum coke in lime calcination exhaust tailings, Int. J. Coal. Prep. Util., 41(2021), No. 9, p. 617. doi: 10.1080/19392699.2018.1498337
      [60]
      M.Q. Xu, Modified flotation rate constant and selectivity index, Miner. Eng., 11(1998), No. 3, p. 271. doi: 10.1016/S0892-6875(98)00005-3
      [61]
      S.H. Shahcheraghi, F.K. Mulenga, M.R. Tavakoli Mohammadi, and S.M. Mousavi, How precise are ore breakage parameters measured from direct batch milling tests, Miner. Eng., 137(2019), p. 157. doi: 10.1016/j.mineng.2019.04.010
      [62]
      A. Hassanzadeh and F. Karakş, The kinetics modeling of chalcopyrite and pyrite, and the contribution of particle size and sodium metabisulfite to the flotation of copper complex ores, Partıcul. Sci. Technol., 35(2017), No. 4, p. 455. doi: 10.1080/02726351.2016.1165323
      [63]
      O.A. Orumwense, T. Negeri, and R. Lastra, Effect of microwave pretreatment on the liberation characteristics of a massive sulfide ore, Min. Metall. Explor., 21(2004), p. 77. doi: 10.1007/BF03403307
      [64]
      H. Gholami, B. Rezai, A. Hassanzadeh, A. Mehdilo, M.R. Yarahmadi, and M. Rudolph, Kinetic study on grinding and flotation of untreated and microwave-treated copper sulfide ore, [in] IMPC Eurasia Conference, Antalya, 2019, p. 129.
      [65]
      G.R. da Silva, E.R.L. Espiritu, S. Mohammadi-Jam, and K.E. Waters, Surface characterization of microwave-treated chalcopyrite, Colloids. Surf. A, 555(2018), p. 407. doi: 10.1016/j.colsurfa.2018.06.078
      [66]
      B. Adu, L. Otten, E. Afenya, and P. Groenevelt, Thermodynamics of microwave (polarized) heating systems, J. Microwave Power Electromagn. Energy, 30(1995), No. 2, p. 90. doi: 10.1080/08327823.1995.11688262
      [67]
      J.N. Mita, The Effect of Microwave Irradiation on the Physicochemical Properties of Pyrite, McGill University Montreal, Quebec, 2018.
      [68]
      A. Hassanzadeh and M. Hasanzadeh, A study on selective flotation in low and high pyritic copper sulphide ores, Sep. Sci. Technol., 51(2016), No. 13, p. 2214. doi: 10.1080/01496395.2016.1202980

    Catalog


    • /

      返回文章
      返回