留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 11
Nov.  2020

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  3383
  • HTML全文浏览量:  829
  • PDF下载量:  71
  • 被引次数: 0
Yong Wang, Ai-xiang Wu, Zhu-en Ruan, Zhi-hui Wang, Zong-su Wei, Gang-feng Yang, and Yi-ming Wang, Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1430-1437. https://doi.org/10.1007/s12613-020-2116-y
Cite this article as:
Yong Wang, Ai-xiang Wu, Zhu-en Ruan, Zhi-hui Wang, Zong-su Wei, Gang-feng Yang, and Yi-ming Wang, Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1430-1437. https://doi.org/10.1007/s12613-020-2116-y
引用本文 PDF XML SpringerLink
研究论文

重建的流变仪用于直接监测尾矿浓缩过程中的脱水性能和扭矩

  • Research Article

    Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process

    + Author Affiliations
    • To further clarify the dewatering performance and torque evolution during the tailings thickening process, a self-made rake was connected to a rheometer to monitor the shear stress and torque. The dewatering performance of the total tailings was greatly improved to a solid mass fraction of 75.33% in 240 min. The dewatering process could be divided into three stages: the rapid torque growth period, damping torque growth period, and constant torque thickening zone. The machine restart was found to have a significant effect on the rake torque; it could result in rake blockage. Furthermore, the simultaneous evolution of the torque and solid mass fraction of thickened tailings was analyzed. A relationship between the torque and the solid mass fraction was established, which followed a power function. Both the experimental and theoretical results provide a reference for the deep cone thickener design and operation to enhance the dewatering performance.

    • loading
    • [1]
      C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
      [2]
      S.H. Yin, Y.J. Shao, A.X. Wu, H.J. Wang, X.H. Liu, and Y. Wang, A systematic review of paste technology in metal mines for cleaner production in China, J. Clean. Prod., 247(2020), art. No. 119590. doi: 10.1016/j.jclepro.2019.119590
      [3]
      D. Wu, R.K. Zhao, C.W. Xie, and S. Liu, Effect of curing humidity on performance of cemented paste back fill, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1046. doi: 10.1007/s12613-020-1970-y
      [4]
      D.L. Wang, Q.L. Zhang, Q.S. Chen, C.C. Qi, Y. Feng, and C.C. Xiao, Temperature variation characteristics in flocculation settlement of tailings and its mechanism, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1438. doi: 10.1007/s12613-020-2022-3
      [5]
      T. du Toit and M. Crozier, Khumani iron ore mine paste disposal and water recovery system, J. South. Afr. Inst. Min. Metall., 112(2012), No. 3, p. 211.
      [6]
      H.Z. Jiao, S.F. Wang, Y.X. Yang, and X.M. Chen, Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill, J. Clean. Prod., 245(2020), art. No. 118882. doi: 10.1016/j.jclepro.2019.118882
      [7]
      M. Unesi, M. Noaparast, S.Z. Shafaei, and E. Jorjani, Modeling the effects of ore properties on water recovery in the thickening process, Int. J. Miner. Metall. Mater., 21(2014), No. 9, p. 851. doi: 10.1007/s12613-014-0981-y
      [8]
      M. Edraki, T. Baumgartl, E. Manlapig, D. Bradshaw, D.M. Franks, and C.J. Moran, Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches, J. Clean. Prod., 84(2014), p. 411. doi: 10.1016/j.jclepro.2014.04.079
      [9]
      A.X. Wu, Z.E. Ruan, R. Bürger, S.H.Y, J.D. Wang, and Y. Wang, Optimization of flocculation and settling parameters of tailings slurry by response surface methodology, Miner. Eng., 156(2020), art. No. 106488. doi: 10.1016/j.mineng.2020.106488
      [10]
      H.Z. Jiao, S.F. Wang, A.X. Wu, H.M. Shen, and J.D. Wang, Cementitious property of NaAlO2-activated Ge slag as cement supplement, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1594. doi: 10.1007/s12613-019-1901-y
      [11]
      A.X. Wu, Z.E. Ruan, C.P. Li, S.Y. Wang, Y.M. Wang, and J.D. Wang, Numerical study of flocculation settling and thickening of whole-tailings in deep cone thickener using CFD approach, J. Cent. South Univ., 26(2019), No. 3, p. 711. doi: 10.1007/s11771-019-4041-7
      [12]
      R. Jewell and A.B. Fourie, Paste and Thickened Tailings: A Guide, Australian Centre for Geomechanics, Perth, 2012.
      [13]
      F. Concha and R. Bürger, A century of research in sedimentation and thickening, KONA Powder Part. J., 20(2002), p. 38. doi: 10.14356/kona.2002009
      [14]
      M. Tanguay, P. Fawell, and S. Adkins, Modelling the impact of two different flocculants on the performance of a thickener feedwell, Appl. Math. Modell., 38(2014), No. 17-18, p. 4262. doi: 10.1016/j.apm.2014.04.047
      [15]
      A. Farkish and M. Fall, Rapid dewatering of oil sand mature fine tailings using super absorbent polymer (SAP), Miner. Eng., 50-51(2013), p. 38. doi: 10.1016/j.mineng.2013.06.002
      [16]
      S. Wang, X.J. Wang, Q.S. Chen, X.P. Song, J.C. Qin, and Y.X. Ke, Influence of coarse tailings on flocculation settlement, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1065. doi: 10.1007/s12613-019-1948-9
      [17]
      A.T. Owen, T.V. Nguyen, and P.D. Fawell, The effect of flocculant solution transport and addition conditions on feedwell performance in gravity thickeners, Int. J. Miner. Process., 93(2009), No. 2, p. 115. doi: 10.1016/j.minpro.2009.07.001
      [18]
      T.V. Nguyen, J.B. Farrow, J. Smith, and P.D. Fawell, Design and development of a novel thickener feedwell using computational fluid dynamics, J. South. Afr. Inst. Min. Metall., 112(2012), No. 11, p. 939.
      [19]
      R.B. White, I.D. Šutalo, and T. Nguyen, Fluid flow in thickener feedwell models, Miner. Eng., 16(2003), No. 2, p. 145. doi: 10.1016/S0892-6875(02)00252-2
      [20]
      M. Ebrahimzadeh Gheshlaghi, A. Soltani Goharrizi, and A. Aghajani Shahrivar, Simulation of a semi-industrial pilot plant thickener using CFD approach, Int. J. Min. Sci. Technol., 23(2013), No. 1, p. 63. doi: 10.1016/j.ijmst.2013.01.010
      [21]
      F. Concha, J. P. Segovia, S.Vergara, A. Pereira, E. Elorza, P. Leonelli, and F.Betancourt, Audit industrial thickeners with new on-line instrumentation, Powder. Technol., 314(2017), p. 680. doi: 10.1016/j.powtec.2017.03.040
      [22]
      A.X. Wu, Y. Wang, and H.J. Wang, Effect of rake rod number and arrangement on tailings thickening performance, J. Cent. South Univ., 45(2014), No. 1, p. 244.
      [23]
      J. Du, R.A. Pushkarova, and R.S.C. Smart, A cryo-SEM study of aggregate and floc structure changes during clay settling and raking processes, Int. J. Miner. Process. J., 93(2009), No. 1, p. 66. doi: 10.1016/j.minpro.2009.06.004
      [24]
      G. Huang, J.T. Liu, L.J. Wang, and Z.H. Song, Flow field simulation of agitating tank and fine coal conditioning, Int. J. Miner. Process., 148(2016), p. 116. doi: 10.1016/j.minpro.2016.01.020
      [25]
      Z.E. Ruan, C.P. Li, and C. Shi, Numerical simulation of flocculation and settling behavior of whole-tailings particles in deep-cone thickener, J. Cent. South Univ., 23(2016), No. 3, p. 740. doi: 10.1007/s11771-016-3119-8
      [26]
      M. Rudman, K. Simic, D.A. Paterson, P. Strode, A. Brent, and I.D. Šutalo, Raking in gravity thickeners, Int. J. Miner. Process., 86(2008), No. 1-4, p. 114. doi: 10.1016/j.minpro.2007.12.002
      [27]
      Z.E. Ruan, Y. Wang, A.X. Wu, S.H. Yin, and F. Jin, A theoretical model for the rake blockage mitigation in deep cone thickener: A case study of lead−zinc mine in China, Math. Probl. Eng., 2019(2019), art. No. 2130617.
      [28]
      R. Kahane, T. Nguyen, and M.P. Schwarz, CFD modelling of thickeners at Worsley Alumina Pty Ltd, Appl. Math. Modell., 26(2002), No. 2, p. 281. doi: 10.1016/S0307-904X(01)00061-0
      [29]
      M. Rudman, D.A. Paterson, and K. Simic, Efficiency of raking in gravity thickeners, Int. J. Miner. Process., 95(2010), No. 1-4, p. 30. doi: 10.1016/j.minpro.2010.03.007
      [30]
      H. Li, H.J. Wang, A.X. Wu, H.Z. Jiao, and X.H. Liu, Pressure rake analysis of deep cone thickeners based on tailings’ settlement and rheological characteristics, J. Univ. Sci. Technol. Beijing, 35(2013), No. 12, p. 1553.
      [31]
      H.J. Wang, X. Zhou, A.X. Wu, Y.M. Wang, and L.H. Yang, Mathematical model and factors of paste thickener rake torque, Chin. J. Eng., 40(2018), No. 6, p. 673.
      [32]
      C.K. Tan, J. Bao, and G. Bickert, A study on model predictive control in paste thickeners with rake torque constraint, Miner. Eng., 105(2017), p. 52. doi: 10.1016/j.mineng.2017.01.011
      [33]
      H. J. Wang, Q. R. Chen, A. X. Wu, Y. G. Zhai, and X. P. Zhang, Study on the thickening properties of unclassified tailings and its application to thickener design, J. Univ. Sci. Technol. Beijing, 33(2011), No. 6, p. 676.
      [34]
      F.N. Shi and X.F. Zheng, The rheology of flotation froths, Int. J. Miner. Process., 69(2003), No. 1-4, p. 115. doi: 10.1016/S0301-7516(02)00120-5
      [35]
      A.M. Salam, B. Örmeci, and P.H. Simms, Determination of the optimum polymer dose for dewatering of oil sands tailings using UV-vis spectrophotometry, J. Pet. Sci. Eng., 147(2016), p. 68. doi: 10.1016/j.petrol.2016.05.004
      [36]
      Y. Wang, A.X. Wu, H.J. Wang, S.Z. Liu, and B. Zhou, Influence mechanism of flocculant dosage on tailings thickening, J. Univ. Sci. Technol. Beijing, 35(2013), No. 11, p. 1419.
      [37]
      Y. Wang, A.X. Wu, H.J. Wang, and B. Zhou, Dynamic thickening characteristics and mathematical model of total tailings, Rock Soil Mech., 35(2014), Suppl. 2, p. 168.
      [38]
      H.J. Wang, Y. Wang, A.X. Wu, B. Zhou, P. Yang, S.F. Yu, and N.B. Peng, Dynamic compaction and static compaction mechanism of fine unclassified tailings, J. Univ. Sci. Technol. Beijing, 35(2013), No. 5, p. 566.
      [39]
      S. Mizani and P. Simms, Method-dependent variation of yield stress in a thickened gold tailings explained using a structure based viscosity model, Miner. Eng., 98(2016), p. 40. doi: 10.1016/j.mineng.2016.07.011
      [40]
      S. Mizani, P. Simms, and W. Wilson, Rheology for deposition control of polymer-amended oil sands tailings, Rheol. Acta, 56(2017), No. 7-8, p. 623. doi: 10.1007/s00397-017-1015-2
      [41]
      L. Huynh, D.A. Beattie, D. Fornasiero, and J. Ralston, Effect of polyphosphate and naphthalene sulfonate formaldehyde condensate on the rheological properties of dewatered tailings and cemented paste backfill, Miner. Eng., 19(2006), No. 1, p. 28. doi: 10.1016/j.mineng.2005.05.001
      [42]
      S. Lim, K.H. Ahn, S.J. Lee, A. Kumar, N. Duan, X. Sun, S.P. Usher, and P.J. Scales, Yield and flow measurement of fine and coarse binary particulate mineral slurries, Int. J. Miner. Process., 119(2013), p. 6. doi: 10.1016/j.minpro.2012.12.009
      [43]
      A.X. Wu, Y. Wang, and H.J. Wang, Estimation model for yield stress of fresh uncemented thickened tailings: Coupled effects of true solid density, bulk density, and solid concentration, Int. J. Miner. Process., 143(2015), p. 117. doi: 10.1016/j.minpro.2015.09.010

    Catalog


    • /

      返回文章
      返回